首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HKT1 is a high affinity K(+) transporter protein that is a member of a large superfamily of transporters found in plants, bacteria, and fungi. These transporters are primarily involved in K(+) uptake and are energized by Na(+) or H(+). HKT1 is energized by Na(+) but also mediates low affinity Na(+) uptake and may therefore be a pathway for Na(+) uptake, which is toxic to plants. The aim of this study was to identify regions of HKT1 that are involved in K(+)/Na(+) selectivity and alter the amino acid composition in those regions to increase the ionic selectivity of the transporter. A highly charged loop was identified, and two deletions were created that resulted in the removal of charged and uncharged amino acids. The functional changes caused by the deletions were studied in yeast and Xenopus oocytes. The deletions improved the K(+)/Na(+) selectivity of the transporter and increased the salt tolerance of the yeast cells in which they were expressed. In light of recent structural models of members of this symporter superfamily, it was necessary to determine the orientation of this highly charged loop. Introduction of an epitope tag allowed us to demonstrate that this loop faces the outside of the membrane where it is likely to facilitate the interaction with cations such as K(+) and Na(+). This study has identified an important structural feature in HKT1 that in part determines its K(+)/Na(+) selectivity. Understanding the structural basis of the functional characteristics in transporters such as HKT1 may have important implications for increasing the salt tolerance of higher plants.  相似文献   

2.
3.
Gao  Li-Wei  Yang  Sen-Lin  Wei  Shi-Wei  Huang  Dan-Feng  Zhang  Yi-Dong 《Plant molecular biology》2020,103(4-5):561-580
Plant Molecular Biology - CmHKT1;1 selectively exports Na+ from plant cells. Upon NaCl stress, its expression increased in a salt-tolerant melon cultivar. Overexpression of CmHKT1;1 increased...  相似文献   

4.
Cardiac myofibrilsisolated from trout heart have been demonstrated to have a highersensitivity for Ca2+ than mammalian cardiac myofibrils.Using cardiac troponin C (cTnC) cloned from trout and mammalian hearts,we have previously demonstrated that this comparatively highCa2+ sensitivity is due, in part, to trout cTnC (ScTnC)having twice the Ca2+ affinity of mammalian cTnC (McTnC)over a broad range of temperatures. The amino acid sequence of ScTnC is92% identical to McTnC. To determine the residues responsible for thehigh Ca2+ affinity, the function of a number of ScTnC andMcTnC mutants was characterized by monitoring an intrinsic fluorescentreporter that monitors Ca2+ binding to site II (F27W). Theremoval of the COOH terminus (amino acids 90-161) from ScTnC andMcTnC maintained the difference in Ca2+ affinity betweenthe truncated cTnC isoforms (ScNTnC and McNTnC). The replacement ofGln29 and Asp30 in ScNTnC with thecorresponding residues from McNTnC, Leu and Gly, respectively, reducedCa2+ affinity to that of McNTnC. These results demonstratethat Gln29 and Asp30 in ScTnC are required forthe high Ca2+ affinity of site II.

  相似文献   

5.
Two hairpin-loop domains in cystatin family proteinase inhibitors form an interface surface region that slots into the active site cleft of papain-like cysteine proteinases, and determine binding affinity. The slot region surface architecture of the soybean cysteine proteinase inhibitor (soyacystatin N, scN) was engineered using techniques of in vitro molecular evolution to define residues that facilitate interaction with the proteinase cleft and modulate inhibitor affinity and function. Combinatorial phage display libraries of scN variants that contain mutations in the essential motifs of the first (QVVAG) and second (EW) hairpin-loop regions were constructed. Approximately 1010-1011 phages expressing recombinant scN proteins were subjected to biopanning selection based on binding affinity to immobilized papain. The QVVAG motif in the first hairpin loop was invariant in all functional scN proteins. All selected variants (30) had W79 in the second hairpin-loop motif, but there was diversity for hydrophobic and basic amino acids in residue 78. Kinetic analysis of isolated scN variants identified a novel scN isoform scN(LW) with higher papain affinity than the wild-type molecule. The variant contained an E78L substitution and had a twofold lower Ki (2.1 pM) than parental scN, due to its increased association rate constant (2.6 +/- 0.09 x 107 M-1sec-1). These results define residues in the first and second hairpin-loop regions which are essential for optimal interaction between phytocystatins and papain, a prototypical cysteine proteinase. Furthermore, the isolated variants are a biochemical platform for further integration of mutations to optimize cystatin affinity for specific biological targets.  相似文献   

6.
Raja MM  Kipp H  Kinne RK 《Biochemistry》2004,43(34):10944-10951
Recently, we identified the extramembranous C-terminus loop 13 of SGLT1 as a binding site for the aromatic glucoside phlorizin, which competitively inhibits sodium D-glucose cotransport. Alkyl glucosides are also competitive inhibitors of the transport. Therefore, in this study, we searched for potential binding sites for alkyl glucosides in loop 13. To this end, we synthesized a photoaffinity label (2'-Azi-n-octyl)-beta-D-glucoside and analyzed the region of attachment using MALDI mass spectrometry, producing wild-type recombinant truncated loop 13. Furthermore, we prepared four single-Trp mutants of the loop and determined their fluorescence, its change in the presence of alkyl glucosides, and their accessibility to acrylamide. Photolabeling of truncated loop 13 with (2'-Azi-n-octyl)-beta-D-glucoside revealed an attachment of the C2 group of the alkyl chain to Gly-Phe-Phe-Arg (amino acid residues 598-601). In the presence of n-hexyl-beta-D-glucoside, all mutants (R601W, D611W, E621W, and L630W) exhibited a significant decrease in Trp fluorescence with an apparent binding affinity of 8-14 microM. Only L630W exhibited a significant blue shift, and only in R601W was a change in acrylamide quenching (protection) observed. No quenching or protection was found for D-glucose; however, 1-hexanol produced the same results as n-hexyl-beta-D-glucoside. The interaction shows stereoselectivity for n-hexyl-beta-D-glucoside binding; the beta-configuration of the sugar moiety at C1, the cis conformation of the unsaturated alkenyl side chain in the C3-C4 bond, and the alkyl chain length of six to eight carbon atoms lead to an optimum interaction. A schematic two-dimensional model was derived in which C2 interacts with the region around residue 601, C3 and C4 interact with the region between residues 614 and 619, and C6-C8 interact with the region between residues 621 and 630. The data demonstrate that loop 13 provides binding sites for alkyl glucosides as well as for phlorizin; thus, loop 13 of SGLT1 seems to be a major binding domain for the aglucone residues of competitive D-glucose transport inhibitors.  相似文献   

7.
A cytoplasmic nontransport K(+)/Rb(+) site in the P-domain of the Na(+), K(+)-ATPase has been identified by anomalous difference Fourier map analysis of crystals of the [Rb(2)].E(2).MgF(4)(2-) form of the enzyme. The functional roles of this third K(+)/Rb(+) binding site were studied by site-directed mutagenesis, replacing the side chain of Asp(742) donating oxygen ligand(s) to the site with alanine, glutamate, and lysine. Unlike the wild-type Na(+), K(+)-ATPase, the mutants display a biphasic K(+) concentration dependence of E(2)P dephosphorylation, indicating that the cytoplasmic K(+) site is involved in activation of dephosphorylation. The affinity of the site is lowered significantly (30-200-fold) by the mutations, the lysine mutation being most disruptive. Moreover, the mutations accelerate the E(2) to E(1) conformational transition, again with the lysine substitution resulting in the largest effect. Hence, occupation of the cytoplasmic K(+)/Rb(+) site not only enhances E(2)P dephosphorylation but also stabilizes the E(2) dephosphoenzyme. These characteristics of the previously unrecognized nontransport site make it possible to account for the hitherto poorly understood trans-effects of cytoplasmic K(+) by the consecutive transport model, without implicating a simultaneous exposure of the transport sites toward the cytoplasmic and extracellular sides of the membrane. The cytoplasmic K(+)/Rb(+) site appears to be conserved among Na(+), K(+)-ATPases and P-type ATPases in general, and its mode of operation may be associated with stabilizing the loop structure at the C-terminal end of the P6 helix of the P-domain, thereby affecting the function of highly conserved catalytic residues and promoting helix-helix interactions between the P- and A-domains in the E(2) state.  相似文献   

8.
Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+) ions, one H(+) and the counter-transport of one K(+) ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph), whose three dimensional structure is known is also coupled to three Na(+) ions but only two Na(+) ion binding sites have been observed in the crystal structure of Glt(Ph). In order to fully utilize the Glt(Ph) structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of Glt(Ph) and accurately determine the number and location of Na(+) ions coupled to transport. Several sites have been proposed for the binding of a third Na(+) ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for Glt(Ph) and reveal a new site for the third Na(+) ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in Glt(Ph), and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na(+) compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na(+) ion in Glt(Ph) and EAAT1.  相似文献   

9.
The degree of heterogeneity of active Na+/K(+)-ATPases has been investigated in terms of ouabain sensitivity. A mathematical analysis of the dose-response curves (inhibition of Na+/K(+)-ATPase) at equilibrium is consistent with the putative existence of three inhibitory states for ouabain two of high (very high plus high) and one of low affinity. The computed IC50 values are: 23.0 +/- 0.15 nM, 460 +/- 4.0 nM and 320 +/- 4.6 microM, respectively. The relative abundance of the three inhibitory states was estimated as: 39%, 36% and 20%, respectively. Direct measurements of [3H]ouabain-binding at equilibrium carried out on membrane preparations with ATP, Mg2+ and Na+ also revealed two distinct high affinity-binding sites, the apparent Kd values of which were 17.0 +/- 0.2 nM (very high) and 80 +/- 1 nM (high), respectively. Dissociation processes were studied at different ouabain concentrations according to both reversal of enzyme inhibition and [3H]ouabain release. The reversal of enzyme inhibition occurred at three different rates, depending upon the ouabain doses used (10 nM, 2 and 100 microM). When the high-affinity sites were involved (ouabain doses lower than 2 microM) the dissociation process was biphasic. A similar biphasic pattern was also detected by [3H]ouabain-release. The time-course of [3H]ouabain dissociation (0.1 microM) was also biphasic. These data indicate that the three catalytic subunits of rat brain Na+/K(+)-ATPase alpha 1, alpha 2 and alpha 3 (Hsu, Y.-M. and Guidotti, G. (1989) Biochemistry 28, 569-573) are able to hydrolyse ATP and exhibit different affinities for cardiac glycosides.  相似文献   

10.
HKT1 has been shown to be essential in Na+ homeostasis in plants. In this paper, we report the analysis of Na+ accumulation in different plant organs of two tomato species with contrasting salt tolerances: Solanum lycopersicum and Solanum pennellii. Furthermore, we relate these differences in Na+ accumulation between the two species to the differences in HKT1;2 transport kinetics and HKT1;2 expression. S. lycopersicum showed “Na+ excluder” behaviour, whereas S. pennellii showed “Na+ includer” behaviour. SlHKT1;2 expression, in contrast to SpHKT1;2 expression showed a significant effect of NaCl treatment, especially stems had a high increase in SlHKT1;2 expression. SlHKT1;2 promoter-GUS reporter gene analysis showed that SlHKT1;2 is expressed in the vasculature surrounding the roots and shoots of transformed Arabidopsis plants. In this paper, we present HKT1;2 protein sequences of both tomato species and provide evidence that both SlHKT1;2 and SpHKT1;2 are Na+ transporters. Our kinetic studies showed that SpHKT1;2, in comparison with SlHKT1;2, had a lower affinity for Na+. This low affinity of SpHKT1;2 correlated with higher xylem Na+ and higher accumulation of Na+ in stems and leaves of S. pennellii. Our findings demonstrate the importance of the understanding of transport characteristics of HKT1;2 transporters to improve the understanding of Na+ homeostasis in plants.  相似文献   

11.
Durum wheat (Triticum turgidum subsp. durum) is more salt sensitive than bread wheat (Triticum aestivum). A novel source of Na(+) exclusion conferring salt tolerance to durum wheat is present in the durum wheat Line 149 derived from Triticum monococcum C68-101, and a quantitative trait locus contributing to low Na(+) concentration in leaf blades, Nax1, mapped to chromosome 2AL. In this study, we used the rice (Oryza sativa) genome sequence and data from the wheat expressed sequence tag deletion bin mapping project to identify markers and construct a high-resolution map of the Nax1 region. Genes on wheat chromosome 2AL and rice chromosome 4L had good overall colinearity, but there was an inversion of a chromosomal segment that includes the Nax1 locus. Two putative sodium transporter genes (TmHKT7) related to OsHKT7 were mapped to chromosome 2AL. One TmHKT7 member (TmHKT7-A1) was polymorphic between the salt-tolerant and -sensitive lines, and cosegregated with Nax1 in the high-resolution mapping family. The other TmHKT7 member (TmHKT7-A2) was located within the same bacterial artificial chromosome contig of approximately 145 kb as TmHKT7-A1. TmHKT7-A1 and -A2 showed 83% amino acid identity. TmHKT7-A2, but not TmHKT7-A1, was expressed in roots and leaf sheaths of the salt-tolerant durum wheat Line 149. The expression pattern of TmHKT7-A2 was consistent with the physiological role of Nax1 in reducing Na(+) concentration in leaf blades by retaining Na(+) in the sheaths. TmHKT7-A2 could control Na(+) unloading from xylem in roots and sheaths.  相似文献   

12.
13.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

14.
A plant's ability to cope with salt stress is highly correlated with their ability to reduce the accumulation of sodium ions in the shoot. Arabidopsis mutants affected in the ABSCISIC ACID INSENSITIVE (ABI) 4 gene display increased salt tolerance, whereas ABI4‐overexpressors are hypersensitive to salinity from seed germination to late vegetative developmental stages. In this study we demonstrate that abi4 mutant plants accumulate lower levels of sodium ions and higher levels of proline than wild‐type plants following salt stress. We show higher HKT1;1 expression in abi4 mutant plants and lower levels of expression in ABI4‐overexpressing plants, resulting in reduced accumulation of sodium ions in the shoot of abi4 mutants. HKT1;1 encodes a sodium transporter which is known to unload sodium ions from the root xylem stream into the xylem parenchyma stele cells. We have shown recently that ABI4 is expressed in the root stele at various developmental stages and that it plays a key role in determining root architecture. Thus ABI4 and HKT1;1 are expressed in the same cells, which suggests the possibility of direct binding of ABI4 to the HKT1;1 promoter. In planta chromatin immunoprecipitation and in vitro electrophoresis mobility shift assays demonstrated that ABI4 binds two highly related sites within the HKT1;1 promoter. These sites, GC(C/G)GCTT(T), termed ABI4‐binding element (ABE), have also been identified in other ABI4‐repressed genes. We therefore suggest that ABI4 is a major modulator of root development and function.  相似文献   

15.
16.
Bacteriophage λ repressor binds co-operatively to adjacent pairs of DNA target sites. A novel combination of positive genetic selections, involving two different operon fusions derived from P22 challenge phages, was used to isolate mutant λ repressors that have lost the ability to bind co-operatively to tandem sites yet retain the ability to bind a strong, single site. These cb (co-operative binding) mutations result in 10 different amino acid changes, which define eight residues in the carboxyl-terminus of repressor. Because challenge phage derivatives may be applied to study essentially any specific protein-DNA interaction, analogous combinations of genetic selections may be used to explore the ways that a variety of proteins interact to assemble regulatory complexes.  相似文献   

17.
The Na+,K+-ATPase belongs to the P-ATPase family, whose characteristic property is the formation of a phosphorylated intermediate. The enzyme is also a defined target for cardiotonic steroids which inhibit its functional activity and initiate intracellular signaling. Here we describe the 4.6 ? resolution crystal structure of the pig kidney Na+,K+-ATPase in its phosphorylated form stabilized by high affinity binding of the cardiotonic steroid ouabain. The steroid binds to a site formed at transmembrane segments αM1-αM6, plugging the ion pathway from the extracellular side. This structure differs from the previously reported low affinity complex with potassium. Most importantly, the A domain has rotated in response to phosphorylation and αM1-2 move towards the ouabain molecule, providing for high affinity interactions and closing the ion pathway from the extracellular side. The observed re-arrangements of the Na+,K+-ATPase stabilized by cardiotonic steroids may affect protein-protein interactions within the intracellular signal transduction networks.  相似文献   

18.
Functional characterization of Arabidopsis thaliana GAT1 in heterologous expression systems, i.e. Saccharomyces cerevisiae and Xenopus laevis oocytes, revealed that AtGAT1 (At1g08230) codes for an H(+)-driven, high affinity gamma-aminobutyric acid (GABA) transporter. In addition to GABA, other omega-aminofatty acids and butylamine are recognized. In contrast to the most closely related proteins of the proline transporter family, proline and glycine betaine are not transported by AtGAT1. AtGAT1 does not share sequence similarity with any of the non-plant GABA transporters described so far, and analyses of substrate selectivity and kinetic properties showed that AtGAT1-mediated transport is similar but distinct from that of mammalian, bacterial, and S. cerevisiae GABA transporters. Consistent with a role in GABA uptake into cells, transient expression of AtGAT1/green fluorescent protein fusion proteins in tobacco protoplasts revealed localization at the plasma membrane. In planta, AtGAT1 expression was highest in flowers and under conditions of elevated GABA concentrations such as wounding or senescence.  相似文献   

19.
20.
《Molecular membrane biology》2013,30(7-8):462-472
Abstract

GltS of Escherichia coli is a secondary transporter that catalyzes Na+-glutamate symport. The structural model of GltS shows two homologous domains with inverted membrane topology that are connected by a central loop that resides in the cytoplasm. Each domain contains a reentrant loop structure. Accessibility of the Cys residues in two GltS mutants in which Pro351 and Asn356 in the reentrant loop in the C-terminal domain were replaced by Cys is demonstrated to be sensitive to the catalytic state supporting a role for the reentrant loops in catalysis. Saturating concentrations of the substrate L-glutamate protected both mutants against inactivation by thiol reagents, while the presence of the co-ion Na+ stimulated the inactivation of both mutants. Insertion of the 10 kDa biotin acceptor domain (BAD) of oxaloacetate decarboxylase of Klebsiella pneumoniae in the central cytoplasmic loop blocked the access pathway from the periplasmic side of the membrane to the cysteine residues in mutants P351C and N356C in the reentrant loop. Kinetically, insertion of BAD increased the maximal rate of uptake 2.7-fold while leaving the apparent affinity constants for L-glutamate and Na+ unaltered. The data suggests that insertion of BAD in the central loop results in conformational changes at the translocation site that lower the activation energy of the translocation step without affecting the access pathway from the periplasmic side for substrate and co-ions. It is concluded that changes in the central loop that connects the two domains may have a regulatory function on the activity of the transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号