首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The ballistic impact of a human head model protected by a Personnel Armor System Ground Troops Kevlar® helmet is analysed using the finite element method. The emphasis is to examine the effect of the interior cushioning system as a shock absorber in mitigating ballistic impact to the head. The simulations of the frontal and side impacts of the full metal jacket (FMJ) and fragment-simulating projectile (FSP) were carried out using LS-DYNA. It was found that the Kevlar® helmet with its interior nylon and leather strap was able to defeat both the FMJ and FSP without the projectiles penetrating the helmet. However, the head injuries caused by the FMJ impact can be fatal due to the high stiffness of the interior strap. The bulge section at the side of the Kevlar® helmet had more room for deformation that resulted in less serious head injuries.  相似文献   

2.
A recently published finite element (FE) head model is modified to consider the viscoelasticity of the meninges, the spongy and compact bone in the skull. The cerebrospinal fluid (CSF) is simulated explicitly as a hydrostatic fluid by using a surface-based fluid modelling method, which allows fluid and structure interaction. It is found that the modified model yields smoother pressure responses in a head impact simulation. The baseline model underestimated the peak von Mises stress in the brain by 15% and the peak principal stress in the skull by 33%. The increase in the maximum principal stress in the skull is mainly caused by the updation of the material's viscoelasticity, and the change in the maximum von Mises stress in the brain is mainly caused by the improvement of the CSF simulation. The study shows that the viscoelasticity of the head tissue should be considered, and that the CSF should be modelled as a fluid, when using FE analysis to study head injury due to impact.  相似文献   

3.
To better understand head injuries, human head finite element (FE) models have been reported in the literature. In scenarios where the head is directly impacted and measurements of head accelerations are not available, a high-quality skull model, as well as a high-quality brain model, is needed to predict the effect of impact on the brain through the skull. Furthermore, predicting cranial bone fractures requires comprehensively validated skull models. Lastly, high-quality meshes for both the skull and brain are needed for accurate strain/stress predictions across the entire head. Hence, we adopted a multi-block approach to develop hexahedral meshes for the brain, skull, and scalp simultaneously, a first approach in its kind. We then validated our model against experimental data of brain pressures (Nahum et al., 1977 Nahum AM, Smith R, Ward CC. 1977. Intracranial pressure dynamics during head impact. Proceedings of the 21st Stapp Car Crash Conference, SAE Paper No. 770922; Warrendale, PA: Society of Automotive Engineers.[Crossref] [Google Scholar]) and comprehensive skull responses (Yoganandan et al., 1995 Yoganandan N, Pintar FA, Sances A, Jr., Walsh PR, Ewing CL, Thomas DJ, Snyder RG. 1995. Biomechanics of skull fracture. J Neurotrauma. 12(4):659668.[Crossref], [PubMed], [Web of Science ®] [Google Scholar], Yoganandan et al., 2004 Yoganandan N, Zhang J, Pintar FA. 2004. Force and acceleration corridors from lateral head impact. Traffic Injury Prevention. 5(4):368373.[Taylor &; Francis Online] [Google Scholar], and Raymond et al., 2009 Raymond D, Van Ee C, Crawford G, Bir C. 2009. Tolerance of the skull to blunt ballistic temporo-parietal impact. J Biomech. 42(15):24792485.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). We concluded that a human head FE model was developed with capabilities to predict blunt- and ballistic-impact-induced skull fractures and pressure-related brain injuries.  相似文献   

4.
American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.  相似文献   

5.
To understand the mechanopathogenesis of brain lesions, finite element (FE) head models are used. There is a broad range of material properties, contact interfaces and integration schemes used for the different parts in current FE head models. The effect of material behaviour and contact definitions on a head impact analysis is reported in the literature, whereas the effect of FE integration schemes is a rather unexplored domain. This paper starts with the development of a simplified head model to which small adaptations are made in the integration scheme to obtain multiple analyses that are compared using an accident reconstruction. The performed study highlighted potential hazards of different integration schemes and the significant effect they have on the simulated mechanical responses of the head. Based on a comparison between FE softwares using an impact test and patch test, it was seen that also the software could have an effect on the FE analysis results.  相似文献   

6.
7.
The purpose of this study was to determine whether modifying an existing, highly biofidelic full body finite element model [total human model for safety (THUMS)] would produce valid amplitude and temporal shock wave characteristics as it travels proximally through the lower extremity. Modifying an existing model may be more feasible than developing a new model, in terms of cost, labour and expertise. The THUMS shoe was modified to more closely simulate the material properties of a heel pad. Relative errors in force and acceleration data from experimental human pendulum impacts and simulated THUMS impacts were 22% and 54%, respectively, across the time history studied. The THUMS peak acceleration was attenuated by 57.5% and took 19.7 ms to travel proximally along the lower extremity. Although refinements may be necessary to improve force and acceleration timing, the modified THUMS represented, to a certain extent, shock wave propagation and attenuation demonstrated by living humans under controlled impact conditions.  相似文献   

8.
For a finite locus model, Markov chain Monte Carlo (MCMC) methods can be used to estimate the conditional mean of genotypic values given phenotypes, which is also known as the best predictor (BP). When computationally feasible, this type of genetic prediction provides an elegant solution to the problem of genetic evaluation under non-additive inheritance, especially for crossbred data. Successful application of MCMC methods for genetic evaluation using finite locus models depends, among other factors, on the number of loci assumed in the model. The effect of the assumed number of loci on evaluations obtained by BP was investigated using data simulated with about 100 loci. For several small pedigrees, genetic evaluations obtained by best linear prediction (BLP) were compared to genetic evaluations obtained by BP. For BLP evaluation, used here as the standard of comparison, only the first and second moments of the joint distribution of the genotypic and phenotypic values must be known. These moments were calculated from the gene frequencies and genotypic effects used in the simulation model. BP evaluation requires the complete distribution to be known. For each model used for BP evaluation, the gene frequencies and genotypic effects, which completely specify the required distribution, were derived such that the genotypic mean, the additive variance, and the dominance variance were the same as in the simulation model. For lowly heritable traits, evaluations obtained by BP under models with up to three loci closely matched the evaluations obtained by BLP for both purebred and crossbred data. For highly heritable traits, models with up to six loci were needed to match the evaluations obtained by BLP.  相似文献   

9.
Returning to the point of departure after exploring the environment is a key capability for most animals. In the absence of landmarks, this task will be solved by integrating direction and distance traveled over time. This is referred to as path integration or dead reckoning. An important question is how the nervous systems of navigating animals such as the 1 mm3 brain of ants can integrate local information in order to make global decision. In this article we propose a neurobiologically plausible system of storing and retrieving direction and distance information. The path memory of our model builds on the well established concept of population codes, moreover our system does not rely on trigonometric functions or other complex non-linear operations such as multiplication, but only uses biologically plausible operations such as integration and thresholding. We test our model in two paradigms; in the first paradigm the system receives input from a simulated compass, in the second paradigm, the model is tested against behavioral data recorded from 17 ants. We were able to show that our path memory system was able to reliably encode and compute the angle of the vector pointing to the start location, and that the system stores the total length of the trajectory in a dependable way. From the structure and behavior of our model, we derive testable predictions both at the level of observable behavior as well as on the anatomy and physiology of its underlying neuronal substrate.  相似文献   

10.
Abstract A convenient test system for screening the thermal germination behaviour of seeds was developed for both basic and applied research in seed germination ecophysiology. Only two temperature-controlled facilities, a test period of about a month and a relatively small number of sample seeds arc needed to obtain information on the thermal-germination parameters of individual seed populations, such as lower or higher limit temperatures, and thermal times required for germination. In the test system, the germination performances of sample seed populations were compared under two temperature regimes: a gradually increasing temperature regime and a gradually decreasing temperature regime, in which the seeds were subjected to gradually changing temperatures in the range of 4 36°C. In order to assess the effects of various values for thermal-germination parameters on the patterns of germination performance in the system, the behaviour of model seeds characterized by a definite set of thermal germination parameters were investigated. Referring to the results of the simulations, the actual germination patterns of some wild-seed populations in the test system were interpreted in terms of thermal-germination parameters.  相似文献   

11.
Integrins are expressed in a highly regulated manner at the maternal‐fetal interface during implantation. However, the significance of extracellular matrix (ECM) ligands during the integrin‐mediated embryo attachment to the endometrium is not fully understood. Thus, the distribution of fibronectin in the rat uterus and blastocyst was studied at the time of implantation. Fibronectin was absent in the uterine luminal epithelial cells but was intensely expressed in the trophoblast cells and the inner cell mass suggesting that fibronectin secreted from the blastocyst may be a possible bridging ligand for the integrins expressed at the maternal‐fetal interface. An Arg‐Gly‐Asp (RGD) peptide was used to block the RGD recognition sites on integrins, and the effect on rat blastocyst attachment to Ishikawa cells was examined. There was a significant reduction in blastocyst attachment when either the blastocysts or the Ishikawa cells were pre‐incubated with the RGD‐blocking peptide. Thus, successful attachment of the embryo to the endometrium requires the interaction of integrins on both the endometrium and the blastocyst with the RGD sequence of ECM ligands, such as fibronectin. Pre‐treatment of both blastocysts and Ishikawa cells with the RGD peptide also inhibited blastocyst attachment, but not completely, suggesting that ECM bridging ligands that do not contain the RGD sequence are also involved in embryo attachment. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号