共查询到3条相似文献,搜索用时 2 毫秒
1.
Andrew Post Lauren Dawson T. Blaine Hoshizaki Michael D. Gilchrist Michael D. Cusimano 《Computer methods in biomechanics and biomedical engineering》2019,22(7):713-726
Concussion can occur from a variety of events (falls to ice, collisions etc) in ice hockey, and as a result it is important to identify how these different impact sources affect the relationship between impact kinematics and strain that has been found to be associated to this injury. The purpose of this research was to examine the relationship between kinematic variables and strain in the brain for impact sources that led to concussion in ice hockey. Video of professional ice hockey games was analyzed for impacts that resulted in reported clinically diagnosed concussions. The impacts were reconstructed using physical models/ATDs to determine the impact kinematics and then simulated using finite element modelling to determine maximum principal strain and cumulative strain damage measure. A stepwise linear regression was conducted between linear acceleration, change in linear velocity, rotational acceleration, rotational velocity, and strain response in the brain. The results for the entire dataset was that rotational acceleration had the highest r2 value for MPS (r2 = 0.581) and change in rotational velocity for cumulative strain damage measure (r2 = 450). When the impact source (shoulder, elbow, boards, or ice impacts) was isolated the rotational velocity and acceleration r2 value increased, indicating that when evaluating the relationships between kinematics and strain based metrics the characteristics of the impact is an important factor. These results suggest that rotational measures should be included in future standard methods and helmet innovation and design in ice hockey as they have the highest association with strain in the brain tissues. 相似文献
2.
Computational models of the human brain are widely used in the evaluation and development of helmets and other protective equipment. These models are often attempted to be validated using cadaver tissue displacements despite studies showing neural tissue degrades quickly after death. Addressing this limitation, this study aimed to develop a technique for quantifying living brain motion in vivo using a closed head impact animal model of traumatic brain injury (TBI) called CHIMERA. We implanted radiopaque markers within the brain of three adult ferrets and resealed the skull while the animals were anesthetized. We affixed additional markers to the skull to track skull kinematics. The CHIMERA device delivered controlled, repeatable head impacts to the head of the animals while the impacts were fluoroscopically stereo-visualized. We observed that 1.5 mm stainless steel fiducials (∼8 times the density of the brain) migrated from their implanted positions while neutral density targets remained in their implanted position post-impact. Brain motion relative to the skull was quantified in neutral density target tests and showed increasing relative motion at higher head impact severities. We observed the motion of the brain lagged behind that of the skull, similar to previous studies. This technique can be used to obtain a comprehensive dataset of in vivo brain motion to validate computational models reflecting the mechanical properties of the living brain. The technique would also allow the mechanical response of in vivo brain tissue to be compared to cadaveric preparations for investigating the fidelity of current human computational brain models. 相似文献
3.
Concussion has been linked to the presence of injurious strains in the brain tissues. Research investigating severe brain injury has reported that strains in the brain may be affected by two parameters: magnitude of the acceleration, and duration of that acceleration. However, little is known how this relationship changes in terms of creating risk for brain injury for magnitudes and durations of acceleration common in sporting environments. This has particular implications for the understanding and prevention of concussive risk of injury in sporting environments. The purpose of this research was to examine the interaction between linear and rotational acceleration and duration on maximum principal strain in the brain tissues for loading conditions incurred in sporting environments. Linear and rotational acceleration loading curves of magnitudes and durations similar to those from impact in sport were used as input to the University College Brain Trauma Model and maximum principal strain (MPS) was measured for the different curves. The results demonstrated that magnitude and duration do have an effect on the strain incurred by the brain tissue. As the duration of the acceleration increases, the magnitude required to achieve strains reflecting a high risk of concussion decreases, with rotational acceleration becoming the dominant contributor. The magnitude required to attain a magnitude of MPS representing risk of brain injury was found to be as low as 2500 rad/s2 for impacts of 10–15 ms; indicating that interventions to reduce the risk of concussion in sport must consider the duration of the event while reducing the magnitude of acceleration the head incurs. 相似文献