首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
DP Burke  DJ Kelly 《PloS one》2012,7(7):e40737
Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC) differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.  相似文献   

4.
Regulation of angiogenesis by extracellular matrix   总被引:23,自引:0,他引:23  
During angiogenesis, endothelial cell growth, migration, and tube formation are regulated by pro- and anti-angiogenic factors, matrix-degrading proteases, and cell-extracellular matrix interactions. Temporal and spatial regulation of extracellular matrix remodeling events allows for local changes in net matrix deposition or degradation, which in turn contributes to control of cell growth, migration, and differentiation during different stages of angiogenesis. Remodeling of the extracellular matrix can have either pro- or anti-angiogenic effects. Extracellular matrix remodeling by proteases promotes cell migration, a critical event in the formation of new vessels. Matrix-bound growth factors released by proteases and/or by angiogenic factors promote angiogenesis by enhancing endothelial migration and growth. Extracellular matrix molecules, such as thrombospondin-1 and -2, and proteolytic fragments of matrix molecules, such as endostatin, can exert anti-angiogenic effects by inhibiting endothelial cell proliferation, migration and tube formation. In contrast, other matrix molecules promote endothelial cell growth and morphogenesis, and/or stabilize nascent blood vessels. Hence, extracellular matrix molecules and extracellular matrix remodelling events play a key role in regulating angiogenesis.  相似文献   

5.
The formation of new blood vessels, or angiogenesis, is a necessary process during development but also for tumour growth and other pathologies. It is promoted by different growth factors that stimulate endothelial cells to proliferate, migrate, and generate new tubular structures. Syndecans, transmembrane heparan sulphate proteoglycans, bind such growth factors through their glycosaminoglycan chains and could transduce the signal to the cytoskeleton, thus regulating cell behaviour. We demonstrated that syndecan-2, the major syndecan expressed by human microvascular endothelial cells, is regulated by growth factors and extracellular matrix proteins, in both bidimensional and tridimensional culture conditions. The role of syndecan-2 in “in vitro” tumour angiogenesis was also examined by inhibiting its core protein expression with antisense phosphorothioate oligonucleotides. Downregulation of syndecan-2 reduces spreading and adhesion of endothelial cells, enhances their migration, but also impairs the formation of capillary-like structures. These results suggest that syndecan-2 has an important function in some of the necessary steps that make up the angiogenic process. We therefore propose a pivotal role of this heparan sulphate proteoglycan in the formation of new blood vessels.  相似文献   

6.
Advances in vascular tissue engineering have been tremendous over the past 15 years, yet there remains a need to optimize current constructs to achieve vessels having true growth potential. Toward this end, it has been suggested that computational models may help hasten this process by enabling time-efficient parametric studies that can reduce the experimental search space. In this paper, we present a first generation computational model for describing the in vivo development of a tissue engineered vein from an implanted polymeric scaffold. The model was motivated by our recent data on the evolution of mechanical properties and microstructural composition over 24 weeks in a mouse inferior vena cava interposition graft. It is shown that these data can be captured well by including both an early inflammatory-mediated and a subsequent mechano-mediated production of extracellular matrix. There remains a pressing need, however, for more data to inform the development of next generation models, particularly the precise transition from the inflammatory to the mechanobiological dominated production of matrix having functional capability.  相似文献   

7.
Summary During angiogenesis, the microvasculature displays both vessel remodeling and expansion under the control of both cellular and extracellular influences. We have evaluated the role of angiogenic and angiostatic molecules on angiogenesis in anin vitro model that more appropriately duplicates the cellular and extracellular components of this process. Freshly isolated microvessel fragments from rat adipose tissue (RFMF) were cultured within three-dimensional collagen I gels. These fragments were characterized at the time of isolation and were composed of vessel segments observed in the microvasculature of fatin situ (i.e., arterioles, venules, and capillaries). Fragments also exhibited characteristic ablumenally associated cells including smooth muscle cells and pericytes. Finally, fragments were encased in an extracellular matrix composed of collagen type IV and collagen type I/III. The elongation of microvascular elements was subsequently evaluated using morphologic and immunocytochemical techniques. The proliferation, migration, and elongation of cellular elements in microvessel fragments from rat adipose tissue was dependent on initial fragment density, matrix density, and required serum. Inclusion of endothelial cell growth factors to microvessel fragments from rat adipose tissue 3-D cultures resulted in the accelerated elongation of tube structures and the expression of von Willebrand factor in cells constituting these tubes. Molecules with reported angiostatic capacity (e.g., transforming growth factor and hydrocortisone) inhibited vessel tube elongation. In vitro methods have been developed to evaluate numerous mechanisms associated with angiogenesis, including endothelial cell proliferation, migration, and phenotypic modulation. Microvascular endothelial cell fragments described in this study represent anin vitro population of cells that accurately duplicate thein vivo microcirculatory elements of fat. The proliferation of cells and elongation of microvascular elements subsequently observed in three-dimensional cultures provides anin vitro model of angiogenesis. Microvascular formation in this system results from pre-existing microvessel fragments unlike tube formation observed when cultured endothelial cells are placed in three-dimensional gels. This form of tube formation from cultured endothelium is more characteristic of vasculogenesis. Thus, the formation of microvascular elements from microvessel fragments provides the opportunity to examine the mechanisms regulating angiogenesis in anin vitro system amenable to precise experimental manipulation.  相似文献   

8.
The extracellular matrix is a dynamic environment that constantly undergoes remodelling and degradation during vital physiological processes such as angiogenesis, wound healing, and development. Unbalanced extracellular matrix breakdown is associated with many diseases such as arthritis, cancer and fibrosis. Interstitial collagen is degraded by matrix metalloproteinases with collagenolytic activity by MMP-1, MMP-8 and MMP-13, collectively known as the collagenases. Matrix metalloproteinase 1 (MMP-1) plays a pivotal role in degradation of interstitial collagen types I, II, and III. Here, we report the crystal structure of the active form of human MMP-1 at 2.67 A resolution. This is the first MMP-1 structure that is free of inhibitor and a water molecule essential for peptide hydrolysis is observed coordinated with the active site zinc. Comparing this structure with the human proMMP-1 shows significant structural differences, mainly in the relative orientation of the hemopexin domain, between the pro form and active form of the human enzyme.  相似文献   

9.
Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo‐vessel formation and secreting pro‐angiogenic factors. Stromal cell‐derived factor 1 (SDF‐1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF‐1 and CXCR4 is an effective strategy for EPC mobilization. We developed a novel CXCR4 antagonist P2G, a mutant protein of SDF‐1β with high antagonistic activity against CXCR4 and high potency in enhancing ischaemic angiogenesis and blood perfusion. However, its direct effects on ischaemic tissue remain largely unknown. In this study, P2G was found to possess a robust capability to promote EPC infiltration and incorporation in neo‐vessels, enhance the expression and function of pro‐angiogenic factors, such as SDF‐1, vascular endothelial growth factor and matrix metalloprotein‐9, and activate cell signals involved in angiogenesis, such as proliferating cell nuclear antigen, protein kinase B (Akt), extracellular regulated protein kinases and mammalian target of rapamycin, in ischaemic tissue. Moreover, P2G can attenuate fibrotic remodelling to facilitate the recovery of ischaemic tissue. The capability of P2G in direct augmenting ischaemic environment for angiogenesis suggests that it is a potential candidate for the therapy of ischaemia diseases.  相似文献   

10.
Both mechanical and biological factors play an important role in normal as well as impaired fracture healing. This study aims to provide a mathematical framework in which both regulatory mechanisms are included. Mechanics and biology are coupled by making certain parameters of a previously established bioregulatory model dependent on local mechanical stimuli. To illustrate the potential added value of such a framework, this coupled model was applied to investigate whether local mechanical stimuli influencing only the angiogenic process can explain normal healing as well as overload-induced nonunion development. Simulation results showed that mechanics acting directly on angiogenesis alone was not able to predict the formation of overload-induced nonunions. However, the direct action of mechanics on both angiogenesis and osteogenesis was able to predict overload-induced nonunion formation, confirming the hypotheses of several experimental studies investigating the interconnection between angiogenesis and osteogenesis. This study shows that mathematical models can assist in testing hypothesis on the nature of the interaction between biology and mechanics.  相似文献   

11.
Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule’s size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.  相似文献   

12.
In adult vessels the proliferation rate of differentiated endothelial cells is very low. In response to several environmental stimuli the expression of so-called ‘angiogenic factors’ is upregulated and the messenger RNAs are actively translated in secreted factors which induce the proliferation of endothelial cells; the digestion of their basement membrane then allows their migration and differentiation. Considerable progress has been made during the past years in elucidating the molecular actors of angiogenesis. Vascular endothelial growth factor turned out to represent the major inducer of angiogenesis. Optional splicing of its pre-messenger RNA generates various isoforms which differ not only by their storage in the extracellular matrix but also by their signaling pathways.  相似文献   

13.
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi‐step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high‐throughput experimentation to the angiogenesis process.  相似文献   

14.
Historically, great efforts have been made to elucidate the biochemical pathways that direct the complex process of wound healing; however only recently has there been recognition of the importance that mechanical signals play in the process of tissue repair and scar formation. The body's physiologic response to injury involves a dynamic interplay between mechanical forces and biochemical cues which directs a cascade of signals leading ultimately to the formation of fibrotic scar. Fibroblasts are a highly mechanosensitive cell type and are also largely responsible for the generation of the fibrotic matrix during scar formation and are thus a critical player in the process of mechanotransduction during tissue repair. Mechanotransduction is initiated at the interface between the cell membrane and the extracellular matrix where mechanical signals are first translated into a biochemical response. Focal adhesions are dynamic multi-protein complexes through which the extracellular matrix links to the intracellular cytoskeleton. These focal adhesion complexes play an integral role in the propagation of this initial mechanical cue into an extensive network of biochemical signals leading to widespread downstream effects including the influx of inflammatory cells, stimulation of angiogenesis, keratinocyte migration, fibroblast proliferation and collagen synthesis. Increasing evidence has demonstrated the importance of the biomechanical milieu in healing wounds and suggests that an integrated approach to the discovery of targets to decrease scar formation may prove more clinically efficacious than previous purely biochemical strategies.  相似文献   

15.
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.  相似文献   

16.
Non-sprouting angiogenesis, also known as intussusceptive angiogenesis (IA), is an important modality of blood vessel morphogenesis in growing tissues. We present a novel computational framework for simulation of IA to answer some of the questions concerning the underlying mechanisms of the remodeling process. The model relies on mechanical interactions between blood and tissue, includes the structural maturation of the vessel wall, and is controlled by stimulating or inhibiting chemical agents. The model provides a simple explanation for the formation of microvessels and bifurcations from capillaries via IA, allowing for both maintenance and avoidance of shunt vessels. Detailed hemodynamic and transport properties for oxygen, metabolites or growth factors can be predicted. The model is an in silico framework for testing certain conceptual ideas about the mechanisms of intussusceptive growth and remodeling, in particular those related to mechanical and transport phenomena.  相似文献   

17.
Malignant tumors require a blood supply in order to survive and spread. These tumors obtain their needed blood from the patient''s blood stream by hijacking the process of angiogenesis, in which new blood vessels are formed from existing blood vessels. The CXCR2 (chemokine (C-X-C motif) receptor 2) receptor is a transmembrane G-protein-linked molecule found in many cells that is closely associated with angiogenesis1. Specific blockade of the CXCR2 receptor inhibits angiogenesis, as measured by several assays such as the endothelial tube formation assay. The tube formation assay is useful for studying angiogenesis because it is an excellent method of studying the effects that any given compound or environmental condition may have on angiogenesis. It is a simple and quick in vitro assay that generates quantifiable data and requires relatively few components. Unlike in vivo assays, it does not require animals and can be carried out in less than two days. This protocol describes a variation of the extracellular matrix supporting endothelial tube formation assay, which tests the CXCR2 receptor.  相似文献   

18.
The formation and perfusion of developing renal blood vessels (apart from glomeruli) are greatly understudied. As vasculature develops via angiogenesis (which is the branching off of major vessels) and vasculogenesis (de novo vessel formation), perfusion mapping techniques such as resin casts, in vivo ultrasound imaging, and micro-dissection have been limited in demonstrating the intimate relationships between these two processes and developing renal structures within the embryo. Here, we describe the procedure of in utero intra-cardiac ultrasound-guided FITC-labeled tomato lectin microinjections on mouse embryos to gauge the ontogeny of renal perfusion. Tomato lectin (TL) was perfused throughout the embryo and kidneys harvested. Tissues were co-stained for various kidney structures including: nephron progenitors, nephron structures, ureteric epithelium, and vasculature. Starting at E13.5 large caliber vessels were perfused, however peripheral vessels remained unperfused. By E15.5 and E17.5, small peripheral vessels as well as glomeruli started to become perfused. This experimental technique is critical for studying the role of vasculature and blood flow during embryonic development.  相似文献   

19.
The vasculature plays a crucial role in inflammation, angiogenesis, and atherosclerosis associated with the pathogenesis of inflammatory rheumatic diseases, hence the term 'vascular rheumatology'. The endothelium lining the blood vessels becomes activated during the inflammatory process, resulting in the production of several mediators, the expression of endothelial adhesion molecules, and increased vascular permeability (leakage). All of this enables the extravasation of inflammatory cells into the interstitial matrix. The endothelial adhesion and transendothelial migration of leukocytes is a well-regulated sequence of events that involves many adhesion molecules and chemokines. Primarily selectins, integrins, and members of the immunoglobulin family of adhesion receptors are involved in leukocyte 'tethering', 'rolling', activation, and transmigration. There is a perpetuation of angiogenesis, the formation of new capillaries from pre-existing vessels, as well as that of vasculogenesis, the generation of new blood vessels in arthritis and connective tissue diseases. Several soluble and cell-bound angiogenic mediators produced mainly by monocytes/macrophages and endothelial cells stimulate neovascularization. On the other hand, endogenous angiogenesis inhibitors and exogenously administered angiostatic compounds may downregulate the process of capillary formation. Rheumatoid arthritis as well as systemic lupus erythematosus, scleroderma, the antiphospholipid syndrome, and systemic vasculitides have been associated with accelerated atherosclerosis and high cardiovascular risk leading to increased mortality. Apart from traditional risk factors such as smoking, obesity, hypertension, dyslipidemia, and diabetes, inflammatory risk factors, including C-reactive protein, homocysteine, folate deficiency, lipoprotein (a), anti-phospholipid antibodies, antibodies to oxidized low-density lipoprotein, and heat shock proteins, are all involved in atherosclerosis underlying inflammatory rheumatic diseases. Targeting of adhesion molecules, chemokines, and angiogenesis by administering nonspecific immunosuppressive drugs as well as monoclonal antibodies or small molecular compounds inhibiting the action of a single mediator may control inflammation and prevent tissue destruction. Vasoprotective agents may help to prevent premature atherosclerosis and cardiovascular disease.  相似文献   

20.
Angiogenesis, the formation of new blood vessels from preexisting vessels, is a highly complex process. It is regulated in a finely-tuned manner by numerous molecules including not only soluble growth factors such as vascular endothelial growth factor and several other growth factors, but also a diverse set of insoluble molecules, particularly collagenous and non-collagenous matrix constituents. In this review we have focused on the role and potential mechanisms of a multifunctional small leucine-rich proteoglycan decorin in angiogenesis. Depending on the cellular and molecular microenvironment where angiogenesis occurs, decorin can exhibit either a proangiogenic or an antiangiogenic activity. Nevertheless, in tumorigenesis-associated angiogenesis and in various inflammatory processes, particularly foreign body reactions and scarring, decorin exhibits an antiangiogenic activity, thus providing a potential basis for the development of decorin-based therapies in these pathological situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号