首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancellous bone consists of a framework of solid trabeculae interspersed with bone marrow. The structure of the bone tissue framework is highly convoluted and complex, being fractal and statistically self-similar over a limited range of magnifications. To date, the structure of natural cancellous bone tissue has been defined using 2D and 3D imaging, with no facility to modify and control the structure. The potential of four computer-generated paradigms has been reviewed based upon knowledge of other fractal structures and chaotic systems, namely Diffusion Limited Aggregation (DLA), Percolation and Epidemics, Cellular Automata, and a regular Grid with randomly relocated nodes. The resulting structures were compared for their ability to create realistic structures of cancellous bone rather than reflecting growth and form processes. Although the creation of realistic computer-generated cancellous bone structures is difficult, it should not be impossible. Future work considering the combination of fractal and chaotic paradigms is underway.  相似文献   

2.
Ever since Julius Wolff proposed the law of bone transformation in the 19th century, it has been widely known that the trabecular structure of cancellous bone adapts functionally to the loading environment. To understand the mechanism of Wolff's law, a three-dimensional (3D) computer simulation of trabecular structural changes due to surface remodeling was performed for a human proximal femur. A large-scale voxel finite element model was constructed to simulate the structural changes of individual trabeculae over the entire cancellous region. As a simple remodeling model that considers bone cellular activities regulated by the local mechanical environment, nonuniformity of local stress was assumed to drive the trabecular surface remodeling to seek a uniform stress state. Simulation results demonstrated that cell-scale (~10 μm) remodeling in response to mechanical stimulation created complex 3D trabecular structures of the entire bone-scale (~10 cm), as illustrated in the reference of Wolff. The bone remodeling reproduced the characteristic anisotropic structure in the coronal cross section and the isotropic structures in other cross sections. The principal values and axes of a structure characterized by fabric ellipsoids corresponded to those of the apparent stress of the structure. The proposed large-scale computer simulation indicates that in a complex mechanical environment of a hierarchical bone structure of over 104 length scale (from ~10 μm to ~10 cm), a simple remodeling at the cellular/trabecular levels creates a highly complex and functional trabecular structure, as characterized by bone density and orientation.  相似文献   

3.
Osteoarthritic cancellous bone was studied to investigate the development of this pathology, and the functional changes it induces in the bone. In order to predict how the morphological alterations of the tissue induced by the pathology can change the mechanical properties of the structure, two different strategies have been used in the literature: (1) emphasising the influence of structural anisotropy; (2) stressing the highly inhomogeneous characteristics of cancellous bone. The aim of the present study was to verify the theory that mechanical strength of osteoarthritic cancellous bone depends both on tissue anisotropy and inhomogeneity.Twenty-five specimens were extracted from osteoarthritic femoral heads, along selected directions, and analysed by means of a microtomograph. The same specimens were mechanically tested in compression to determine the mechanical strength. The most representative structural parameters, confirmed by a stepwise analysis, were used to define four models to describe the measured mechanical strength. The models were applied neglecting (global analysis) or considering (local analysis) tissue inhomogeneities to verify whether the correlation with ultimate stress could be improved.The coefficient of determination increased from 0.53, considering only bone volume fraction, up to 0.88, combining it with off-axis angle and normalised eigenvalue. A further improvement was found performing a local analysis (R2=0.90), which corresponded to a decrease of 17% in the residual error.The proposed approach of considering both tissue anisotropy and inhomogeneity improved the accuracy in predicting the mechanical behaviour of cancellous bone tissue and should be suitable for more general loading conditions.  相似文献   

4.
目的:在骨组织工程中,如何制备出理想的支架材料一直是研究重点;目前主要的有天然生物支架材料、人工合成有机材料和无机材料等;生物衍生骨即天然生物支架材料的一种,由于其与天然骨在形态结构上较为相似,是近年来研究较多的支架材料之一;既往形态学研究局限于在二维层面,对于其三维结构参数分析较少。故本实验主要运用Micro-CT对生物衍生松质骨的三维结构参数进行分析,量化评价其作为骨组织工程支架材料的结构参数。方法:截取新鲜猪松质骨,经脱脂脱蛋白部分脱钙及去抗原处理后,制作成生物衍生骨支架;应用Micro.CT扫描,重建三维图并量化分析其结构参数,统计软件SPSS分析各参数间的相关性。结果:经Micro.CT扫描,得到二维CT图和三维重建图。各三维结构参数的值分别为:BV/TV(20.48±5.14)%;BS/BV(41.66±5.39)1/ram;Porosity(79.52±5.14)%;Tb.Th(0.10±0.01)mm;Tb.N(1.99±0.47)l/mm;Tb.Sp(0.32±0.05)mm;Tb.Pf(2.03±4.70)1/mm;SMI(1.28±0.35);DA(1.60±0.23);Corm.Dn(158.53±106.09)I/mm3。各参数间相关系数具有统计学意义的为:(1)Porosity与BS/BV、Tb.Th;(2)BV/TV与BS/BV、Tb.Th;(3)BS/BV与Coma.Dn、Porosity、BV/TV、;(4)Tb.Th与Porosity、BV厂IV、Conn.Dn;(5)DA与Corm.Dn;(6)Conn.Dn与Bs/BV、Tb.Th、DA。结论:Micro-CT扫描、量化分析是评价支架材料结构参数的理想方法;也证明生物衍生骨支架符合骨组织工程对支架材料的三维结构要求,尤其在孔径大小、孔隙率、表面积体积比等三维结构参数,此外,也可为其他支架材料的制备在三维结构上的要求提供参考依据。  相似文献   

5.
Background aimsLong-bone pseudoarthrosis is a major orthopedic concern because of numerous factors such as difficulty of the treatment, high recurrence, high costs and the devastating effects on the patients' quality of life, which sometimes ends in amputation. Although the “gold standard” for the treatment of this pathology is autologous bone grafting, which has high osteogenic, osteoconductive and osteoinductive properties, this treatment presents some restrictions such as the limited amount of bone that can be taken from the patient and donor site morbidity. Bone marrow mononuclear cells (BM-MNCs) comprise progenitor and stem cells with pro-angiogenic and pro-osteogenic properties. Allogenic cancellous bone graft is a natural and biodegradable osteoconductive and osteoinductive scaffold. Combination of these two components could mimic the advantages of autologous bone grafting while avoiding its main limitations.MethodsLong-bone pseudoarthrosis was treated in seven patients with autologous BM-MNCs from iliac crest combined with frozen allogenic cancellous bone graft obtained from the tissue bank.ResultsAll patients showed complete bone consolidation 5.3 ± 0.9 months (range, 2–9 months) after cell transplantation. Moreover, limb pain disappeared in all of them. The mean follow-up was 35.8 ± 4.6 months after transplantation (range, 24–51 months) without pseudoarthrosis recurrence or pain reappearing.ConclusionsCombination of autologous BM-MNCs and allogenic bone graft could constitute an easy, safe, inexpensive and efficacious attempt to treat long-bone pseudoarthrosis and non-union by reproducing the beneficial properties of autologous bone grafting while restricting its disadvantages.  相似文献   

6.
Understanding of cancellous bone permeability is lacking despite its importance in designing tissue engineering scaffolds for bone regeneration and orthopaedic surgery that relies on infiltration of bone cement into porous cancellous bone. We employed micro-computational fluid dynamics to investigate permeability for 37 cancellous bone specimens, eliminating stringent technical requirements of bench-top testing. Microarchitectural parameters were also determined for the specimens and correlated, using uni-variate and multi-variate regression analyses, against permeability. We determined that bone surface density, trabecular pattern factor, structure model index and trabecular number are other possible predictors of permeability (with R values of 0.47, 0.44, 0.40 and 0.33), in addition to the commonly used porosity parameter (R value of 0.38). Pooling these parameters and performing multi-variate linear regression analysis improved yield the R-value of 0.50, indicating that porosity alone is a poor predictor of cancellous bone permeability and, therefore, other parameters should be included for a better and improved linear model.  相似文献   

7.
Structurally intact cancellous bone allograft is an attractive tissue form because its high porosity can provide space for delivery of osteogenic factors and also allows for more rapid and complete in-growth of host tissues. Gamma radiation sterilization is commonly used in cancellous bone allograft to prevent disease transmission. Commonly used doses of gamma radiation sterilization (25–35 kGy) have been shown to modify cortical bone post-yield properties and crack propagation but have not been associated with changes in cancellous bone material properties. The purpose of this study was to determine the effects of irradiation on the elastic and yield properties and microscopic tissue damage processes in dense cancellous bone. Cancellous bone specimens (13 control, 14 irradiated to 30 kGy) from bovine proximal tibiae were tested in compression to 1.3% apparent strain and examined for microscopic tissue damage. The yield strain in irradiated specimens (0.93±0.11%, mean±SD) did not differ from that in control specimens (0.90±0.11%, p=0.44). No differences in elastic modulus were observed between groups after accounting for differences in bone volume fraction. However, irradiated specimens showed greater residual strain (p=0.01), increased number of microfractures (p=0.02), and reduced amounts of cross-hatching type damage (p<0.01). Although gamma radiation sterilization at commonly used dosing (30 kGy) does not modify elastic or yield properties of dense cancellous bone, it does cause modifications in damage processes, resulting in increased permanent deformation following isolated overloading.  相似文献   

8.
The mechanical capacity and integrity of cancellous bone is crucial in osteoporosis, a condition which is set to become more prevalent with increasing lifespan and population sizes. The fracture toughness (FT) of cancellous bone has never been examined before and the conditions associated with the growth of a major crack through the lattice of cancellous bone, a cellular solid, may improve our understanding for structural integrity of this material. The aim of this study is to provide (i) basic data on cancellous bone FT and (ii) the experimental support for the hypothesis of Gibson, L.J., Ashby, M.F. [1997a. Chapter 10: Wood. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 387–428; Gibson, L.J., Ashby, M.F., 1997b. Chapter 11: Cancellous Bone. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 429–52] that the FT of cancellous bone tissue is governed by the density of the tissue to a power function of between one and two. 294 SENB and 121 DC(T) specimen were manufactured from 45 human femoral heads, 37 osteoporotic and 8 osteoarthritic, as well as 19 equine thoracic vertebrae. The samples were manufactured in two groups: the first aligned with the trabecular structure (A), the second orientated at 90° to the main trabecular orientation (A). The samples were tested in either tensile or bending mode to provide values of the stress intensity factor (K). The results which were obtained show a strong and significant link between the density of the cancellous bone tissue and that the critical stress intensity values are governed by the density of the tissue to a power function of between 1 and 2 (KQ vs. apparent density: A=1.58, A=1.6). Our results provide some fundamental values for the critical stress intensity factor for cancellous bone and also support the previous hypothesis as set by Gibson, L.J., Ashby, M.F., 1997a. Chapter 10: Wood. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 387–428; Gibson, L.J., Ashby, M.F., (1997b). Chapter 11: Cancellous Bone. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 429–52.  相似文献   

9.
ObjectivesAccording to the inter-individual variability of bone mechanical properties, subject-specific evaluation of the cancellous bone Young's modulus is needed to build finite-element models predicting vertebral strength with accuracy. Relationships based on the density assessed by quantitative computed tomography were proposed. However, quantitative computed tomography is not always suited for the analysis of the whole spine for patients’ follow-up because of the high radiation dose. Hence, this study aims at evaluating the mechanical properties of the vertebral cancellous bone using a low-dose X-ray device.Material and methodsNineteen vertebrae were considered. Biplanar radiographs were made using the low-dose EOS® system with a dual-energy modality to evaluate antero-posterior and lateral areal bone mineral densities. A cylindrical sample was extracted from each vertebral body and tested until failure to assess the Young's modulus and the ultimate stress of the vertebral cancellous bone.Results and discussionMechanical properties were significantly related to the EOS® areal densities. On one hand, the relationships remained less predictive than those based on quantitative computed tomography, but on the other hand, they better predict mechanical properties than previous studies using dual X-ray absorptiometry (clinical gold standard system for density assessment).ConclusionThe study shows the feasibility to predict the Young's modulus of the vertebral cancellous bone from the whole vertebral areal bone mineral density (BMD). It gives promising prospects to build finite-element models, including both subject-specific geometry and subject-specific mechanical properties by using a low-dose X-ray device for regions where high radiation doses would limit tomography assessment possibilities.  相似文献   

10.

Bone cement infiltration can be effective at mechanically augmenting osteoporotic vertebrae. While most published literature describes the gain in mechanical strength of augmented vertebrae, we report the first measurements of viscoelastic material changes of cancellous bone due to cement infiltration. We infiltrated cancellous core specimen harvested from osteoporotic cadaveric spines with acrylic bone cement. Bone specimen before and after cement infiltration were subjected to identical quasi-static and relaxation loading in confined and free compression. Testing data were fitted to a linear viscoelastic model of compressible material and the model parameters for cement, native cancellous bone, and cancellous bone infiltrated (composite) with cement were identified. The fitting demonstrated that the linear viscoelastic model presented in this paper accurately describes the mechanical behaviour of cement and bone, before and after infiltration. Although the composite specimen did not completely adopt the properties of bulk bone cement, the stiffening of cancellous bone due to cement infiltration is considerable. The composite was, for example, 8.5 times stiffer than native bone. The local stiffening of cancellous bone in patients may alter the load transfer of the augmented motion segment and may be the cause of subsequent fractures in the vertebrae adjacent to the ones infiltrated with cement. The material model and parameters in this paper, together with an adequate finite-element model, can be helpful to investigate the load shift, the mechanism for subsequent fractures, and filling patterns for ideal cement infiltration.  相似文献   

11.
It is assumed that the activity of osteoblasts and osteoclasts is decreased in bone tissue of aged individuals. However, detailed investigation of the molecular signature of human bone from young compared to aged individuals confirming this assumption is lacking. In this study, quantitative expression analysis of genes related to osteogenesis and osteoclastogenesis of human cancellous bone derived from the distal radius of young and aged individuals was performed. Furthermore, we additionally performed immunohistochemical stainings. The young group included 24 individuals with an average age of 23.2 years, which was compared to cancellous bone derived from 11 body donators with an average age of 81.0 years. In cancellous bone of young individuals, the osteogenesis‐related genes RUNX‐2, OSTERIX, OSTEOPONTIN and OSTEOCALCIN were significantly up‐regulated compared to aged individuals. In addition, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in cancellous bone of young individuals, as well as the WNT gene family member WNT5a and the matrix metalloproteinases MMP‐9. However, quantitative RT‐PCR analysis of BMP‐2, ALP, FGF‐2, CYCLIN‐D1, MMP‐13, RANK, OSTEOPROTEGERIN and TGFb1 revealed no significant difference. Furthermore, Tartrate‐resistant acid phosphatase (TRAP) staining was performed which indicated an increased osteoclast activity in cancellous bone of young individuals. In addition, pentachrome stainings revealed significantly less mineralized bone matrix, more osteoid and an increased bone density in young individuals. In summary, markers related to osteogenesis as well as osteoclastogenesis were significantly decreased in the aged individuals. Thus, the present data extends the knowledge about reduced bone regeneration and healing capacity observed in aged individuals.  相似文献   

12.
摘要 目的:建立植入了骨修复材料小型猪腰椎椎体骨组织标本的不脱钙病理组织切片制备方法。方法:将含骨修复材料的腰椎椎体骨组织标本进行分割暴露组织切面,梯度浓度乙醇脱水后经Technovit 7200 VLC光聚树脂浸润,经黄蓝光共同辐照进行光聚合包埋,借助硬组织病理切磨系统制备含骨修复材料不脱钙病理组织切片。结果:结果显示通过上述方法制备的病理组织切片,经苏木精-伊红(HE)染色及甲苯胺蓝染色后光学显微镜下观察能较好地显示骨的各种组织细胞结构,可清晰的观察到骨小梁的走向及连接情况。结论:研究建立了含骨修复材料骨组织标本病理组织切片制备方法,实现了含骨修复材料不脱钙骨组织病理切片的制备,经病理染色后实现了带植入物的组织学观察,为生物材料及医疗器械动物试验研究提供了新的病理检测手段及组织学评价途径。  相似文献   

13.
目的:探讨采用3D适形打印技术制备的羟基磷灰石/聚乳酸网状复合体在兔颅骨缺损中的修复作用及安全性。方法:以24只新西兰兔为研究对象,以羟基磷灰石/聚乳酸为材料,采用3D适形打印技术制备网状复合体,于兔颅骨顶部制成两个颅骨全层缺损,分别为孔A(左)和孔B(右),孔A(阳性对照组)以自体颅骨为修复材料,孔B(实验组)以复合体为修复材料,观察缺损修复区域的形态学、影像学(X线及CT扫描)及组织学检查结果。结果:植入后24周时,形态学显示:阳性对照组可见致密的骨组织修复,与缺损边缘界限不清,实验组中支架孔隙内纤维组织由新生骨质取代,且新生骨成熟度较提高,材料表面有部分吸收。CT扫描观察显示:冠状面上,阳性对照组缺损修复区域与周围正常骨组织融合为一体,实验组修复材料与缺损边缘融合紧密,与周围正常骨组织结合良好,部分边缘结合不连贯。组织学观察显示:实验组材料部分降解,材料间隔可见新生骨小梁。研究中无实验动物死亡,皮肤切口处缝合良好,无皮下积液,无移植物脱出、红肿感染等情况出现。结论:以3D适形打印技术制备的羟基磷灰石/聚乳酸复合体对兔颅骨缺损有较好的修复作用,能促进缺损区域新骨的形成和生长,且安全性较高。  相似文献   

14.
The development of technologies to promote vascularization of engineered tissue would drive major developments in tissue engineering and regenerative medicine. Recently, we succeeded in fabricating three-dimensional (3D) cell constructs composed of mesenchymal stem cells (MSCs). However, the majority of cells within the constructs underwent necrosis due to a lack of nutrients and oxygen. We hypothesized that incorporation of vascular endothelial cells would improve the cell survival rate and aid in the fabrication of biomimetic bone tissues in vitro. The purpose of this study was to assess the impact of endothelial cells combined with the MSC constructs (MSC/HUVEC constructs) during short- and long-term culture. When human umbilical vein endothelial cells (HUVECs) were incorporated into the cell constructs, cell viability and growth factor production were increased after 7 days. Furthermore, HUVECs were observed to proliferate and self-organize into reticulate porous structures by interacting with the MSCs. After long-term culture, MSC/HUVEC constructs formed abundant mineralized matrices compared with those composed of MSCs alone. Transmission electron microscopy and qualitative analysis revealed that the mineralized matrices comprised porous cancellous bone-like tissues. These results demonstrate that highly biomimetic bone tissue can be fabricated in vitro by 3D MSC constructs incorporated with HUVECs.  相似文献   

15.

Background

High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA) as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods.

Methods

Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose (18FDG) and sodium fluoride (Na18F) PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing.

Results

Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant) increase in 18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone), yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone); yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups.

Conclusion

PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity.  相似文献   

16.
《Endocrine practice》2012,18(5):758-762
ObjectiveTo review the recent evidence that has emerged supporting the role of bone as an endocrine organ.MethodsThis review will detail how bone has emerged as a bona fide endocrine “gland,” and with that, the potential therapeutic implications that could be realized for this hormone-secreting tissue by detailing the evidence in the literature supporting this view.ResultsThe recent advances point to the skeleton as an endocrine organ that modulates glucose tolerance and testosterone production by secretion of the bone-specific protein osteocalcin.ConclusionsBone has classically been viewed as an inert structure that is necessary for mobility, calcium homeostasis, and maintenance of the hematopoietic niche. Recent advances in bone biology using complex genetic manipulations in mice have highlighted the importance of bone not only as a structural scaffold to support the human body, but also as a regulator of a number of metabolic processes that are independent of mineral metabolism. (Endocr Pract. 2012;18:758-762)  相似文献   

17.
We investigate the dynamic structure of human gaze and present an experimental study of the frequency components of the change in gaze position over time during free viewing of computer-generated fractal images. We show that changes in gaze position are scale-invariant in time with statistical properties that are characteristic of a random walk process. We quantify and track changes in the temporal structure using a well-defined scaling parameter called the Hurst exponent, H. We find H is robust regardless of the spatial complexity generated by the fractal images. In addition, we find the Hurst exponent is invariant across all participants, including those with distinct changes to higher order visual processes due to neural degeneration. The value we find for H of 0.57 shows that the gaze dynamics during free viewing of fractal images are consistent with a random walk process with persistent movements. Our research suggests the human visual system may have a common strategy that drives the dynamics of human gaze during exploration.  相似文献   

18.
BackgroundImpaction bone grafting with large particles is considered as mechanically superior to smaller morsels. Interest of freeze-dried irradiated bone for impaction bone grafting has been observed with small particles. Influence of bone process on other particle sizes still needed to be assessed.Material and methodsTwenty-four osteoarthrotic femoral heads were used to prepare fresh-frozen and freeze-dried irradiated cancellous bone. Each group was divided into four batches of different particle sizes, each batch containing 18 samples. The different particle sizes were obtained with a Retsch Cross Beater Mill SK 100, Noviomagus rotating bone mills with two sizes of rasps and a Luer bone rongeur. Bone grafts were impacted in a contained cylinder. Stiffness was monitored during impaction.ResultsFreeze-dried irradiated grafts showed higher stiffness than fresh-frozen bone whatever the size of the particles. Large particles obtained with the rongeur and the large rasp from the Noviomagus bone mill were mechanically superior than small particles up to 30 impactions.InterpretationLarge particles offer better mechanical performance as a greater magnitude of force would be required to deform and break the particles. Freeze-dried irradiated bone brittleness reduces this advantage after 30 impactions. Large particles embrittlement leads to similar mechanical results as small particles at higher impaction rate. This may account for partial collapse of the graft layer in clinical situation when impaction rate is lower. This model supports the use of small particles obtained with thin rasp bone mill when freeze-dried irradiated bone for impaction bone grafting and large particles obtained with the Rongeur when fresh-frozen bone is available.  相似文献   

19.
骨组织工程是通过在体外构建有正常组织功能或疾病生理特点的临床模型,用以药物筛选,或研究疾病发生发展过程。骨骼肌肉系统是载重系统,其功能与组织结构、细胞外基质等密切相关。在构建骨组织体外模型时,需要结合骨、软骨及其他构成成分的生理微环境,表现关节骨软骨接合处的生理特点及作用机制,进而模拟正常及病理状态下骨组织系统对刺激的反应。本综述从骨软骨组织的生理构造入手,阐述了骨软骨连接处在退行性关节病变发生发展过程中的作用,并系统的论述了体外构建三维骨软骨组织的方法及这些方法的优势和局限性,为体外构建骨软骨组织工程在临床上应用提供支持。  相似文献   

20.
Fractal geometry is a potentially valuable tool for quantitatively characterizing complex structures. The fractal dimension (D) can be used as a simple, single index for summarizing properties of real and abstract structures in space and time. Applications in the fields of biology and ecology range from neurobiology to plant architecture, landscape structure, taxonomy and species diversity. However, methods to estimate the D have often been applied in an uncritical manner, violating assumptions about the nature of fractal structures. The most common error involves ignoring the fact that ideal, i.e. infinitely nested, fractal structures exhibit self-similarity over any range of scales. Unlike ideal fractals, real-world structures exhibit self-similarity only over a finite range of scales.Here we present a new technique for quantitatively determining the scales over which real-world structures show statistical self-similarity. The new technique uses a combination of curve-fitting and tests of curvilinearity of residuals to identify the largest range of contiguous scales that exhibit statistical self-similarity. Consequently, we estimate D only over the statistically identified region of self-similarity and introduce the finite scale- corrected dimension (FSCD). We demonstrate the use of this method in two steps. First, using mathematical fractal curves with known but variable spatial scales of self-similarity (achieved by varying the iteration level used for creating the curves), we demonstrate that our method can reliably quantify the spatial scales of self-similarity. This technique therefore allows accurate empirical quantification of theoretical Ds. Secondly, we apply the technique to digital images of the rhizome systems of goldenrod (Solidago altissima). The technique significantly reduced variations in estimated fractal dimensions arising from variations in the method of preparing digital images. Overall, the revised method has the potential to significantly improve repeatability and reliability for deriving fractal dimensions of real-world branching structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号