首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.  相似文献   

2.
Theoretical concerns about the use of cemented or press-fit stems in revision total knee arthroplasty (TKA) include stress shielding with adverse effects on prosthesis fixation. Revision TKA components are commonly stemmed to protect the limited autogenous bone stock remaining. Revision procedures with the use of stems can place abnormal stresses through even normal bone by their constrained design, type of materials and fixation method and may contribute for bone loss. Experimental quantification of strain shielding in the proximal synthetic tibia following TKA is the main purpose of the present study. In this study, cortical bone strains were measured experimentally with tri-axial strain gauges in synthetic tibias before and after in vitro knee surgery. Three tibias were implanted with cemented and press-fit stem augments and solely with a tibial tray (short monobloc stem) of the P.F.C. Sigma Modular Knee System. The difference between principal strains of the implanted and the intact tibia was calculated for each strain gauge position. The results demonstrated a pronounced strain-shielding effect in the proximal level, close to tibial tray with the cemented stem augment. The press-fit stem presented a minor effect of strain shielding but was more extensively throughout the stem. An increase of strains closely to the distal tip of the cemented and the press-fit stem augment was observed. This suggests for a physiological condition, a potential effect of bone resorption at the proximal region for the cemented stem augment. The localized increase of strains in stems tip can be related with the clinical finding of the pain, at the end of stem after revision TKA.  相似文献   

3.
Resorbable ceramic scaffolds based on Silicon stabilized tricalcium phosphate (Si-TCP) were seeded with bone marrow stromal cells (BMSC) and ectopically implanted for 2, 4, and 6 months in immunodeficient mice. Qualitative and quantitative evaluation of the scaffold material was performed by X-ray synchrotron radiation computed microtomography (microCT) with a spatial resolution lower than 5 microm. Unique to these experiments was that microCT data were first collected on the scaffolds before implantation and then on the same scaffolds after they were seeded with BMSC, implanted in the mice and rescued after different times. Volume fraction, mean thickness and thickness distribution were evaluated for both new bone and scaffold phases as a function of the implantation time. New bone thickness increased from week 8 to week 16. Data for the implanted scaffolds were compared with those derived from the analysis of the same scaffolds prior to implantation and with data derived from 100% hydroxyapatite (HA) scaffold treated and analyzed in the same way. At variance with findings with the 100% HA scaffolds a significant variation in the density of the different Si-TCP scaffold regions in the pre- and post-implantation samples was observed. In particular a post-implantation decrease in the density of the scaffolds, together with major changes in the scaffold phase composition, was noticeable in areas adjacent to newly formed bone. Histology confirmed a better integration between new bone and scaffold in the Si-TCP composites in comparison to 100% HA composites where new bone and scaffold phases remained well distinct.  相似文献   

4.
Bone tissue engineering using human bone marrow mesenchymal stem cells (HBMCs) and biocompatible materials provides an attractive approach to regenerate bone tissue to meet the major clinical need. The aim of this study was to examine the effects of novel porous biodegradable composite materials consisting of a bioactive phase (45S5 Bioglass, 0, 5, and 40 wt%) incorporated within a biodegradable poly(dl-lactic acid) matrix, on HBMCs growth. Cell adhesion, spreading, and viability was examined using Cell Tracker Green/Ethidium Homodimer-1. Bone formation was assessed using scaffolds seeded with stro-1 positive HBMCs in nude mice. In vitro biochemistry indicated that with minimal scaffold pre-treatment osteoblast activity falls with increasing Bioglass content. However, 24h scaffold pre-treatment with serum resulted in a significant increase in alkaline phosphatase specific activity in 5 wt% Bioglass composites relative to the 0 and 40 wt% Bioglass groups. In vivo studies indicate significant new bone formation throughout all the scaffolds, as evidenced by immunohistochemistry.  相似文献   

5.
Biodegradable scaffolds are of great value in tissue engineering. We have developed a method for fabricating patient-specific vascular scaffolds from a biocompatible and biodegradable polymer, poly(L-lactide-co-epsilon-caprolactone). This method's usefulness is due to flexibility in the choice of materials and vascular configurations. Here, we present a way to fabricate scaffolds of human carotid artery by combining processes of rapid prototyping, lost wax, dip coating, selective dissolution, and salt leaching. The result was the successful development of porous biodegradable scaffolds, with mechanical strength covering the range of human blood vessels (1-3 MPa). Human umbilical vein endothelial cells were also cultured on the scaffolds and their biocompatibility was confirmed by cell growth. The Young's modulus of scaffolds could be controlled by changing polymer concentration and porosity. The wall thickness of the tubular scaffold was also controllable by adjusting polymer concentration and pull-up velocity during dip coating. We believe that this fabrication technique can be applied to patient-specific regeneration of blood vessels.  相似文献   

6.
A systematic investigation of tissue engineering scaffolds prepared by salt leaching of a photopolymerized dimethacrylate was performed to determine how the scaffold structure (porosity, pore size, etc.) can be controlled and also to determine how the scaffold structure and the mechanical properties are related. Two series of scaffolds were prepared with (1) the same polymer-to-salt ratio but different salt sizes (ranging from average size of 100 to 390 microm) and (2) the same salt size but different polymer-to-salt ratios (ranging from salt mass of 70 to 90%). These scaffolds were examined to determine how the fabrication parameters affected the scaffold morphometric parameters and corresponding mechanical properties. Combined techniques of X-ray microcomputed tomography (microCT), mercury porosimetry, and gravimetric analysis were used to determine the scaffold parameters, such as porosity, pore size, and strut thickness and their size distributions, and pore interconnectivity. Scaffolds with porosities ranging from 57% to 92% (by volume) with interconnected structures could be fabricated using the current technique. The porosity and strut thickness were subsequently related to the mechanical response of the scaffolds, both of which contribute to the compression modulus of the scaffold. The current study shows that the structure and properties of the scaffold could be tailored by the size and the amount of porogen used in the fabrication of the scaffold.  相似文献   

7.
Isolated patellofemoral (PF) arthritis of the knee is a common cause of anterior knee pain and disability. Patellofemoral arthroplasty (PFA) is a bone conserving solution for patients with PF degeneration. Failure mechanisms of PFA include growing tibiofemoral arthritis and loosening of components. The implant loosening can be associated with bone resorption or fatigue-failure of bone by overload. This research work aims at determining the structural effects of the implantation of PF prosthesis Journey PFJ (Smith & Nephew, Inc., Memphis, TN, USA) on femoral cancellous bone. For this purpose, the finite element method is considered to perform computational simulations for different conditions, such as well-fixed and loosening scenarios. From the global results obtained, in the well-fixed scenario, a decrease in strain on cancellous bone was noticed, which can be related to bone resorption. In the loosening scenario, when the cement layer becomes inefficient, a significant increase in cancellous bone strain was observed, which can be associated with bone fatigue-failure.These strain changes suggest a weakness of the femur after PFA.  相似文献   

8.
A novel magnetically actuated scaffold was used to explore the effects of strain stimulus on the proliferation and spatial distribution of smooth muscle cells and improve cell viability in the scaffold interior by pumping nutrients throughout the structure. Magnetically actuable scaffolds were fabricated in a tube shape by winding electrospun sheets of a biodegradable polymer modified with magnetic Fe2O3 nanoparticles. Prior to rolling, the sheets were seeded with smooth muscle cells and wound into tubes with diameter 5.2 mm and wall thickness 0.2 mm. The tubular scaffolds were actuated by a magnetic field to induce a cyclic crimping deformation, which applies strain stimulus to the cells and pumps nutrient fluid through the porous tube walls. Comparison with non‐actuated controls shows that magnetic actuation increases the total cell count throughout the scaffold after 14 days of incubation. Furthermore, whereas cell density as a function of position through the tube wall thickness showed a minimum in the mid‐interior in the controls after 14 days due to cell starvation, the actuated scaffolds displayed a maximum cell density. Comparison of cell distributions with the expected spatial variations in strain amplitude and nutrient flux implies that both strain stimulus and nutrient pumping are significant factors in cell proliferation. Biotechnol. Bioeng. 2013; 110: 936–946. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs) are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP), and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP) were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.  相似文献   

10.
Translational research in bone tissue engineering is essential for “bench to bedside” patient benefit. However, the ideal combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study is to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 wt% and 40 wt% of Bioglass particles with human adipose-derived stem cells (ADSCs) in vitro and in vivo. Live/dead fluorescent markers, confocal microscopy and scanning electron microscopy showed that PDLLA/Bioglass porous scaffolds supported ADSC attachment, growth and osteogenic differentiation, as confirmed by enhanced alkaline phosphatase (ALP) activity. Higher Bioglass content of the PDLLA foams increased ALP activity compared with the PDLLA only group. Extracellular matrix deposition after 8 weeks in the in vitro cultures was evident by Alcian blue/Sirius red staining. In vivo bone formation was assessed by using scaffold/ADSC constructs in diffusion chambers transplanted intraperitoneally into nude mice and recovered after 8 weeks. Histological and immunohistochemical assays indicated significant new bone formation in the 40 wt% and 5 wt% Bioglass constructs compared with the PDLLA only group. Thus, the combination of a well-developed biodegradable bioactive porous PDLLA/Bioglass composite scaffold with a high-potential stem cell source (human ADSCs) could be a promising approach for bone regeneration in a clinical setting.  相似文献   

11.
目的:在骨组织工程中,如何制备出理想的支架材料一直是研究重点;目前主要的有天然生物支架材料、人工合成有机材料和无机材料等;生物衍生骨即天然生物支架材料的一种,由于其与天然骨在形态结构上较为相似,是近年来研究较多的支架材料之一;既往形态学研究局限于在二维层面,对于其三维结构参数分析较少。故本实验主要运用Micro-CT对生物衍生松质骨的三维结构参数进行分析,量化评价其作为骨组织工程支架材料的结构参数。方法:截取新鲜猪松质骨,经脱脂脱蛋白部分脱钙及去抗原处理后,制作成生物衍生骨支架;应用Micro.CT扫描,重建三维图并量化分析其结构参数,统计软件SPSS分析各参数间的相关性。结果:经Micro.CT扫描,得到二维CT图和三维重建图。各三维结构参数的值分别为:BV/TV(20.48±5.14)%;BS/BV(41.66±5.39)1/ram;Porosity(79.52±5.14)%;Tb.Th(0.10±0.01)mm;Tb.N(1.99±0.47)l/mm;Tb.Sp(0.32±0.05)mm;Tb.Pf(2.03±4.70)1/mm;SMI(1.28±0.35);DA(1.60±0.23);Corm.Dn(158.53±106.09)I/mm3。各参数间相关系数具有统计学意义的为:(1)Porosity与BS/BV、Tb.Th;(2)BV/TV与BS/BV、Tb.Th;(3)BS/BV与Coma.Dn、Porosity、BV/TV、;(4)Tb.Th与Porosity、BV厂IV、Conn.Dn;(5)DA与Corm.Dn;(6)Conn.Dn与Bs/BV、Tb.Th、DA。结论:Micro-CT扫描、量化分析是评价支架材料结构参数的理想方法;也证明生物衍生骨支架符合骨组织工程对支架材料的三维结构要求,尤其在孔径大小、孔隙率、表面积体积比等三维结构参数,此外,也可为其他支架材料的制备在三维结构上的要求提供参考依据。  相似文献   

12.
In vitro bone tissue growth inside porous scaffolds can be enhanced by macroscopic cyclic compression of the construct, but the heterogeneous strain generated inside the construct must be investigated to determine appropriate levels of compression. For this purpose a linear micro-finite element (muFE) technique based on micro-computed tomography (muCT) was verified for the calculation of local displacements inside polymer scaffolds, from which local strains may be estimated. Local displacements in the axial direction at the surface of microstructures inside the scaffold in 60 locations were calculated with the muFE model, based on compression simulation of a muCT reconstruction of the scaffold. These displacements were compared with accurately measured displacements in the axial direction in the same polymer scaffold at the same 60 locations, using a micro-compression chamber and muCT reconstructions of the scaffold under two fixed levels of compression (5% and 0%). The correlation between the calculated and the measured displacements, after correction for the dependence of the axial displacement on the axial position, was r=0.786 (r2=0.617). From this we conclude that the linear muFE model is suitable to estimate local surface strains inside polymer scaffolds for tissue engineering applications. This technique can not only be used to determine appropriate parameters such as the level of macroscopic compression in experimental design, but also to investigate the cellular response to local surface strains generated inside three-dimensional scaffolds.  相似文献   

13.
Strain shielding, a mechanical effect occurring in structures combining stiff with more flexible materials, is considered to lead to a reduction of density in bone surrounding the implant. This effect can be related to the weakness of the implant fixation, which can promote implant loosening. Several studies describe a significant decrease in postoperative bone mineral density adjacent to joint implants, which can compromise their long-term fixation. The aim of the present study was to quantify the strain shielding effect on the distal femur after patellofemoral arthroplasty. For this purpose three activities of daily living were considered: level walking, stair climbing and deep bending at different angles of knee flexion. To determine the strain shielding effect, cortical bone strains were measured experimentally with triaxial strain gauges in synthetic femurs before and after patellofemoral arthroplasty for each of the different daily activities. The results showed that the patellofemoral arthroplasty in general reduced the strains in the medial and distal regions of the femur when deep bending activity occurred, consequently, strain shielding in these regions, with strain decreases of ?72.0% and ?67.5% were measured. On the other side, higher values of strain were found in the anterior region after patellofemoral replacement for this activity with an increase of +182.0%. The occurrence of strain shielding seems to be more significant when the angle of knee flexion and applied load increases. Strain shielding and over-loading may have relevant effects on bone remodeling surrounding the patellofemoral implant, suggesting a potential effect of later bone resorption in the medial and distal femur regions in case of regular deep bending activity.  相似文献   

14.
This study analyzed strain variations in 3D ECM scaffolds using a membrane-adherent model (MM) and a direct elongation model (DM). Computational models were solved for target strains from 1 to 10% at varied scaffold thicknesses and intra-scaffold slices. DM strain profiles were uniform within the scaffold and independent of thickness. However, a wide range of strains developed with substantial volume experiencing significantly off-target strain. MM strain profiles varied throughout the scaffold, exhibiting significantly reduced average strain with increasing thickness. These findings are important for tissue engineering studies since biological responses are commonly attributed to a single strain level that only partially describes the mechanical condition, making it difficult to develop precise causal relationships. Spatial strain variations and reduced average strain may warrant targeted sampling for cell response and should be taken into consideration by investigators using large-volume 3D scaffolds when engineering mechanically sensitive tissues.  相似文献   

15.
An artificial construct mimicking the intrinsic properties of the natural extracellular matrix in bones has been considered an ideal platform for bone tissue engineering, as it can present an appropriate microenvironment and regulate cell behaviours. In this report, we introduce biodegradable composite scaffolds consisting of polycaprolactone (PCL) and biphasic calcium phosphate (BCP). The scaffolds were fabricated by a salt-leaching process, and the ability of the scaffolds to facilitate osteogenic differentiation was investigated using human mesenchymal stem cells (hMSCs). The scaffolds had an inter-connected porous structure with quadrilateral pores of approximately 200 ~ 500 μm in width. The mechanical properties of the scaffolds changed as the BCP content was increased in the starting mixture. In the hMSC experiment, although we found that hMSCs adhered to the surface, as well as the inside, of the scaffolds, the incorporated BCP did not increase the proliferation of the hMSCs over 7 days in culture. Interestingly, the alkaline phosphatase (ALP) activity was 4 times higher on the PCL/BCP composite scaffold (0.12 ± 0.03 nmol/min/μg protein) thanon the PCL scaffold (0.03 ± 0.01 nmol/min/μg protein), suggesting that BCP can aid in generating a local environment that promotes bone regeneration. Therefore, a strategy combining polymers and ceramics can be considered a useful platform for bone tissue engineering.  相似文献   

16.
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.  相似文献   

17.
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three‐dimensional scaffold from nano‐hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X‐ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM‐MSCs)/scaffold. After 1, 4, and 12 weeks post‐injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin–eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM‐MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre‐seeded nHA/Gel/SiC scaffold with rBM‐MSCs improves osteogenesis in the engineered bone implant.  相似文献   

18.
A paradigm shift is taking place in orthopaedic and reconstructive surgery from using medical devices and tissue grafts to a tissue engineering approach that uses biodegradable scaffolds combined with cells or biological molecules to repair and/or regenerate tissues. One of the potential benefits offered by solid free-form fabrication technology (SFF) is the ability to create scaffolds with highly reproducible architecture and compositional variation across the entire scaffold, due to its tightly controlled computer-driven fabrication. In this review, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design in bone engineering.We also discuss the application-specific modifications driven by surgeon's requirements in vitro and/or in vivo. Next, we review the current use of SFF techniques in scaffold fabrication in the context of their clinical use in bone regeneration. Lastly, we comment on future developments in our groups, such as the functionalization of novel composite scaffolds with combinations of growth factors; and more specifically the promising area of heparan sulphate polysaccharide immobilization within the bone tissue engineering arena.  相似文献   

19.
In this study, we investigated the processing/structure/property relationship of multi-scaled porous biodegradable scaffolds prepared by combining the gas foaming and NaCl reverse templating techniques. Poly(ε-caprolactone) (PCL), hydroxyapatite (HA) nano-particles and NaCl micro-particles were melt-mixed by selecting different compositions and subsequently gas foamed by a pressure-quench method. The NaCl micro-particles were finally removed from the foamed systems in order to allow for the achievement of the multi-scaled scaffold pore structure. The control of the micro-structural properties of the scaffolds was obtained by the optimal combination of the NaCl templating concentration and the composition of the CO2-N2 mixture as the blowing agent. In particular, these parameters were accurately selected to allow for the fabrication of PCL and PCL-HA composite scaffolds with multi-scaled open pore structures. Finally, the biocompatibility of the scaffolds has been assessed by cultivating pre-osteoblast MG63 cells in vitro, thus demonstrating their potential applications for bone regeneration.  相似文献   

20.
A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x (experimental strains = FE predicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号