首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aortic valve (AV) achieves unidirectional blood flow between the left ventricle and the aorta. Although hemodynamic stresses have been shown to regulate valvular biology, the native wall shear stress (WSS) experienced by AV leaflets remains largely unknown. The objective of this study was to quantify computationally the macro-scale leaflet WSS environment using fluid–structure interaction modeling. An arbitrary Lagrangian–Eulerian approach was implemented to predict valvular flow and leaflet dynamics in a three-dimensional AV geometry subjected to physiologic transvalvular pressure. Local WSS characteristics were quantified in terms of temporal shear magnitude (TSM), oscillatory shear index (OSI) and temporal shear gradient (TSG). The dominant radial WSS predicted on the leaflets exhibited high amplitude and unidirectionality on the ventricularis (TSM>7.50 dyn/cm2, OSI < 0.17, TSG>325.54 dyn/cm2 s) but low amplitude and bidirectionality on the fibrosa (TSM < 2.73 dyn/cm2, OSI>0.38, TSG < 191.17 dyn/cm2 s). The radial WSS component computed in the leaflet base, belly and tip demonstrated strong regional variability (ventricularis TSM: 7.50–22.32 dyn/cm2, fibrosa TSM: 1.26–2.73 dyn/cm2). While the circumferential WSS exhibited similar spatially dependent magnitude (ventricularis TSM: 1.41–3.40 dyn/cm2, fibrosa TSM: 0.42–0.76 dyn/cm2) and side-specific amplitude (ventricularis TSG: 101.73–184.43 dyn/cm2 s, fibrosa TSG: 41.92–54.10 dyn/cm2 s), its temporal variations were consistently bidirectional (OSI>0.25). This study provides new insights into the role played by leaflet–blood flow interactions in valvular function and critical hemodynamic stress data for the assessment of the hemodynamic theory of AV disease.  相似文献   

2.
Bicuspid aortic valves (BAVs) generate flow abnormalities that may promote aortopathy. While positive helix fraction (PHF) index, flow angle (θ), flow displacement (d) and wall shear stress (WSS) exhibit abnormalities in dilated BAV aortas, it is unclear whether those anomalies stem from the abnormal valve anatomy or the dilated aorta. Therefore, the objective of this study was to quantify the early impact of different BAV morphotypes on aorta hemodynamics prior to dilation. Fluid-structure interaction models were designed to quantify standard peak-systolic flow metrics and temporal WSS characteristics in a realistic non-dilated aorta connected to functional tricuspid aortic valve (TAV) and type-I BAVs. While BAVs generated increased helicity (PHF>0.68) in the middle ascending aorta (AA), larger systolic flow skewness (θ>11.2°) and displacement (d>6.8 mm) relative to the TAV (PHF=0.51; θ<5.5°; d<3.3 mm), no distinct pattern was observed between morphotypes. In contrast, WSS magnitude and directionality abnormalities were BAV morphotype- and site-dependent. Type-I BAVs subjected the AA convexity to peak-systolic WSS overloads (up to 1014% difference vs. TAV). While all BAVs increased WSS unidirectionality on the proximal AA relative to the TAV, the most significant abnormality was achieved by the BAV with left-right-coronary cusp fusion on the wall convexity (up to 0.26 decrease in oscillatory shear index vs. TAV). The results indicate the existence of strong hemodynamic abnormalities in non-dilated type-I BAV AAs, their colocalization with sites vulnerable to dilation and the superior specificity of WSS metrics over global hemodynamic metrics to the valve anatomy.  相似文献   

3.
The objective of this study was to determine the orientation and magnitude of maximal displacement forces (DFs) in the thoracic aortic aneurysm endograft (TAA endograft) in three-dimensional (3D) space. Theoretical computer model representing the anatomically worst-case scenario with respect to DF magnitude was used to calculate the magnitude and orientation of maximal DF. A patient-specific anatomical computer model of typically seen, average size anatomy was used to analyse the progression of DF throughout the cardiac cycle. Maximal DFs were 35.01 and 37.32 N in standing and supine position, respectively, in 46-mm diameter TAA graft with 90° bend. A patient-specific model shows that a maximal DF magnitude is achieved at the peak systolic flow. In both models, the orientation of the DF vector was perpendicular to the greater curvature of the aorta, with upward (cranial) and sideways components. The effect of shearing force on the total DF that acts on the TAA endograft was found negligible due to the several orders of magnitude stronger contribution of pressure forces to the total DF relative to the wall shear stress contribution, resulting in aortic diameters and angulation being the main drivers of DF. It was discovered that the TAA endografts can be subjected to much stronger DF than previously suspected. The magnitude of maximal DF in thoracic aorta in the worst-case scenario could be as high as 35.01 N (standing) and 37.32 N (supine). This new information should be used in the process of designing new generations of TAA endografts with better migration resistance properties.  相似文献   

4.
Coronary obstruction is a life threatening complication during and post-transcatheter aortic valve replacement (TAVR). The objective of this preliminary work is to investigate the mechanisms underlying coronary obstruction in a patient after TAVR, in whom coronary obstruction was confirmed in addition to highlighting the importance of pre-procedural planning. The aortic root of an 80-year old male patient with coronary obstruction during TAVR–where a 29 mm SAPIEN 3 was deployed-was segmented from Computed Tomography scans and 3D-printed with compliant material. Flow and pressure data were acquired in this 3D-printed model in-vitro using a pulse duplicator under physiological conditions for the cases: a 29 mm SAPIEN 3, a 26 mm SAPIEN 3 expanded with a 29 mm balloon, and a 31 mm Medtronic-CoreValve deployed annularly, supra and sub-annularly respectively. Only the CoreValve in sub-annular axial position and the 29 mm SAPIEN 3 yielded pressure gradients (PG) lower than 10 mmHg (6.76 ± 0.52 and 5.72 ± 0.13 mmHg respectively) while the 26 mm SAPIEN 3, CoreValve in normal and supra-annular positions yielded higher PGs (15.5 ± 0.48, 12.2 ± 0.15 and 10.8 ± 0.24 mmHg respectively). 29 mm SAPIEN 3 implantation yielded an FFR value of 45.7 ± 0.6%. However, 31 mm CoreValve in any of the three different annular positions yielded FFR values going from 89.6 ± 1.1% in supra-annular position to 98.3 ± 1.1% in sub-annular position. Implantation with a 26 mm SAPIEN 3 expanded with a 29 mm balloon also yielded an FFR of 92.1 ± 1.2%. Coronary obstruction in this patient could have been prevented through usage of different valve types and/or through usage of a different combination of valve size-balloon sizes.  相似文献   

5.
The type-I bicuspid aortic valve (BAV), which differs from the normal tricuspid aortic valve (TAV) most commonly by left-right coronary cusp fusion, is frequently associated with secondary aortopathies. While BAV aortic dilation has been linked to a genetic predisposition, hemodynamics has emerged as a potential alternate etiology. However, the link between BAV hemodynamics and aortic medial degeneration has not been established. The objective of this study was to compare the regional wall shear stresses (WSS) in a TAV and BAV ascending aorta (AA) and to isolate ex vivo their respective impact on aortic wall remodeling. The WSS environments generated in the convex region of a TAV and BAV AA were predicted through fluid–structure interaction (FSI) simulations in an aorta model subjected to both valvular flows. Remodeling of porcine aortic tissue exposed to TAV and BAV AA WSS for 48 h in a cone-and-plate bioreactor was investigated via immunostaining, immunoblotting and zymography. FSI simulations revealed the existence of larger and more unidirectional WSS in the BAV than in the TAV AA convexity. Exposure of normal aortic tissue to BAV AA WSS resulted in increased MMP-2 and MMP-9 expressions and MMP-2 activity but similar fibrillin-1 content and microfibril organization relative to the TAV AA WSS treatment. This study confirms the sensitivity of aortic tissue to WSS abnormalities and demonstrates the susceptibility of BAV hemodynamic stresses to focally mediate aortic medial degradation. The results provide compelling support to the important role of hemodynamics in BAV secondary aortopathy.  相似文献   

6.
Numerical prediction of non-Newtonian blood flow in a 3D abdominal aortic aneurysm bifurcating model is carried out. The non-Newtonian Carreau model is used to characterise the shear thinning behaviour of the human blood. A physical inlet velocity waveform incorporating a radial velocity distribution reasonably representative of a practical case configuration is employed. Case studies subject to both equal and unequal outlet pressures at iliac bifurcations are presented to display convincingly the downstream pressure influences on the flow behaviour within the aneurysm. Simulations indicate that the non-Newtonian aspects of the blood cannot at all be neglected or given a cursory treatment. The wall shear stress (WSS) is found to change significantly at both the proximal and distal ends of the aneurysm. At the peak systole, the WSS is peak around the bifurcation point, whereas the WSS becomes zero in the bifurcation point. Differential downstream pressure fields display significant effects regarding the flow evolution in the iliac arteries, whereas little or no effects are observed directly on the flow details in the aneurysm.  相似文献   

7.
Bicuspid aortic valve (BAV) aortopathy remains of difficult clinical management due to its heterogeneity and further assessment of related aortic hemodynamics is necessary. The aim of this study was to assess systolic hemodynamic indexes and wall stresses in patients with diverse BAV phenotypes and dilated ascending aortas. The aortic geometry was reconstructed from patient-specific images while the aortic valve was generated based on patient-specific measurements. Physiologic material properties and boundary conditions were applied and fully coupled fluid-structure interaction (FSI) analysis were conducted. Our dilated aortic models were characterized by the presence of abnormal hemodynamics with elevated degrees of flow skewness and eccentricity, regardless of BAV morphotype. Retrograde flow was also present. Both features, predicted by flow angle and flow reversal ratios, were consistently higher than those reported for non-dilated aortas. Right-handed helical flow was present, as well as elevated wall shear stress (WSS) on the outer ascending aortic wall. Our results suggest that the abnormal flow associated with BAV may play a role in aortic enlargement and progress it further on already dilated aortas.  相似文献   

8.
Dilation of the wall of the thoracic aorta can be found in patients with a tricuspid (TAV) as well as a bicuspid aortic valve (BAV) with and without a syndromic component. BAV is the most common congenital cardiovascular malformation, with a population prevalence of 0.5–2 %. The clinical course is often characterised by aneurysm formation and in some cases dissection. The non-dilated aortic wall is less well differentiated in all BAV as compared with TAV, thereby conferring inherent developmental susceptibility. Furthermore, a turbulent flow, caused by the inappropriate opening of the bicuspid valve, could accelerate the degenerative process in the aortic wall. However, not all patients with bicuspidy develop clinical complications during their life. We postulate that the increased vulnerability for aortic complications in a subset of patients with BAV is caused by a defect in the early development of the aorta and aortic valve. This review discusses histological and molecular genetic aspects of the normal and abnormal development of the aortic wall and semilunar valves. Aortopathy associated with BAV could be the result of a shared developmental defect during embryogenesis.  相似文献   

9.
Wall shear stress (WSS) distribution in a human aortic arch model is studied using 130 cathode electrodes flush-mounted on the model walls. Flow visualizations are made in a transparent geometry model to identify the regions of fluid mechanical interests, e.g. regions of flow separation, eddy formation and flow stagnancy. The 130 electrodes are strategically positioned in the arch based on information obtained from the flow visualizations. The measured data indicate that the aortic arch may be categorized into eight regions: three along the inner wall of the arch (A,B,C); and five near the outer wall (D,E,F,G,H). (1) The regions of low WSS are distributed along the inner wall of the ascending aorta A; the inner wall of the descending aorta C; and the upstream inner wall of the innominate and the common carotid branchings F. (2) The high WSS regions are distributed along the outer wall of the arch E; and the inner wall in the arch opposite to the left subclavian branching B. (3) In certain regions, high and low WSS may be found next to each other (e.g. G and H) without a definable boundary in between; and (4) as the Reynolds number increases, the areas of low WSS decrease, while the high WSS areas increase with no obvious change in magnitude of the stress along the inner wall of the arch. At the branchings, the WSS distribution is not affected by the Reynolds number within the range of observations. The measured WSS distribution is compared with Rodkiewicz's map of early atherosclerotic lesions in the aortic arch of cholesterol fed rabbits.  相似文献   

10.
Bicuspid aortic valve (BAV), i.e. the fusion of two aortic valve cusps, is the most frequent congenital cardiac malformation. Its progression is often characterized by accelerated leaflet calcification and aortic wall dilation. These processes are likely enhanced by altered biomechanical stimuli, including fluid-dynamic wall shear stresses (WSS) acting on both the aortic wall and the aortic valve. Several studies have proposed the exploitation of 4D-flow magnetic resonance imaging sequences to characterize abnormal in vivo WSS in BAV-affected patients, to support prognosis and timing of intervention. However, current methods fail to quantify WSS peak values.On this basis, we developed two new methods for the improved quantification of in vivo WSS acting on the aortic wall based on 4D-flow data.We tested both methods separately and in combination on synthetic datasets obtained by two computational fluid-dynamics (CFD) models of the aorta with healthy and bicuspid aortic valve. Tests highlighted the need for data spatial resolution at least comparable to current clinical guidelines, the low sensitivity of the methods to data noise, and their capability, when used jointly, to compute more realistic peak WSS values as compared to state-of-the-art methods.The integrated application of the two methods on the real 4D-flow data from a preliminary cohort of three healthy volunteers and three BAV-affected patients confirmed these indications. In particular, quantified WSS peak values were one order of magnitude higher than those reported in previous 4D-flow studies, and much closer to those computed by highly time- and space-resolved CFD simulations.  相似文献   

11.

Background

Although symptomatic patients with severe aortic stenosis have a high disease burden and guidelines recommend aortic valve replacement, many are treated conservatively. This study describes to what extent quality of life is changed by aortic valve replacement relative to conservative treatment.

Methods

This observational study followed 132 symptomatic patients with severe aortic stenosis who were subjected to an SF-36v2TM Health Survey.

Results

At baseline 84 patients were treated conservatively, 48 were referred for aortic valve replacement. In the conservatively treated group 15 patients died during a mean follow-up of 18 months (Kaplan-Meier survival was 85 % and 72 % at one and 2 years respectively) and 22 patients crossed over to the surgical group. Of the resulting 70 patients in the surgical group 3 patients died during a mean follow-up of 11 months (survival 95 % at 1 year). Physical functioning, vitality and general health improved significantly 1 year after aortic valve replacement. In conservatively treated patients physical quality of life deteriorated over time while general health, vitality and social functioning showed a declining trend. Mental health remained stable in both groups.

Conclusions

Aortic valve replacement improves physical quality of life, general health and vitality in patients with symptomatic severe aortic stenosis. Besides having a low life expectancy, conservatively treated patients experience deterioration of physical quality of life. Health surveys such as the SF-36v2TM can be valuable tools in monitoring the burden of disease for an individual patient and offer additional help in treatment decisions.  相似文献   

12.
Aortic arch aneurysm is a complex pathology which requires coverage of one or more aortic arch vessels. In this study we explore the hemodynamic behavior of the aortic arch in aneurysmatic and treated cases with three currently available treatment approaches: Surgery Graft, hybrid Stent-Graft and chimney Stent Graft. The analysis included four models of the time-dependent fluid domains of aneurysmatic arch and of the surgery, hybrid and chimney endovascular techniques. Dimensions of the models are based on typical anatomy, and boundary conditions are based on typical physiological flow.The simulations used computational fluid dynamics (CFD) methods to delineate the time-dependent flow dynamics in the four geometric models.Results of velocity vectors, flow patterns, blood pressure and wall shear stress distributions are presented.The results delineate disturbed and recirculating flow in the aortic arch aneurysm accompanied with low wall shear stress and velocities, compared to a uniformly directed flow and nominal wall shear stress (WSS) in the model of Surgery graft. Out of the two endograft procedures, the hybrid procedure clearly exhibits better hemodynamic performances over the chimney model, with lower WSS, lower pressure drop and less disturbed and vortical flow regions. Although the chimney procedure requires less manufacturing time and cost, it is associated with higher risk rates, and therefore, it is recommended only for emergency cases. This study may shed light on the hemodynamic factors for these complications and provide insight into ways to improve the procedure.  相似文献   

13.
《Journal of biomechanics》2014,47(14):3524-3530
To investigate the hemodynamic performance of overlapping bare-metal stents intervention treatment to thoracic aortic aneurysms (TAA), three simplified TAA models, representing, no stent, with a single stent and 2 overlapped stents deployed in the aneurismal sac, were studied and compared in terms of flow velocity, wall shear stress (WSS) and pressure distributions by means of computational fluid dynamics. The results showed that overlapping stents intervention induced a flow field of slow velocity near the aneurismal wall. Single stent deployment in the sac reduced the jet-like flow formed prior to the proximal neck of the aneurysm, which impinged on the internal wall of the aneurysm. This jet-like flow vanished completely in the overlapping double stents case. Overlapping stents intervention led to an evident decrease in WSS; meanwhile, the pressure acting on the wall of the aneurysm was reduced slightly and presented more uniform distribution. The results therefore indicated that overlapping stents intervention may effectively isolate the thoracic aortic aneurysm, protecting it from rupture. In conclusion, overlapping bare-metal stents may serve a purpose similar to that of the multilayer aneurysm repair system (MARS) manufactured by Cardiatis SA (Isnes, Belgium).  相似文献   

14.
Computational characterizations of aortic valve hemodynamics have typically discarded the effects of coronary flow. The objective of this study was to complement our previous fluid–structure interaction aortic valve model with a physiologic coronary circulation model to quantify the impact of coronary flow on aortic sinus hemodynamics and leaflet wall shear stress (WSS). Coronary flow suppressed vortex development in the two coronary sinuses and altered WSS magnitude and directionality on the three leaflets, with the most substantial differences occurring in the belly and tip regions.  相似文献   

15.
16.
Our knowledge of how geometry influences abdominal aortic aneurysm (AAA) biomechanics is still developing. Both iliac bifurcation angle and proximal neck angle could impact the haemodynamics and stresses within AAA. Recent comparisons of the morphology of ruptured and intact AAA show that cases with large iliac bifurcation angles are less likely to rupture than those with smaller angles. We aimed to perform fluid-structure interaction (FSI) simulations on a range of idealised AAA geometries to conclusively determine the influence of proximal neck and iliac bifurcation angle on AAA wall stress and haemodynamics.Peak wall shear stress (WSS) and time-averaged WSS (TAWSS) in the AAA sac region only increased when the proximal neck angle exceeded 30°. Both peak WSS (p < 0.0001) and peak von Mises wall stress (p = 0.027) increased with iliac bifurcation angle, whereas endothelial cell activation potential (ECAP) decreased with iliac bifurcation angle (p < 0.001) and increased with increasing neck angle.These observations may be important as AAAs have been shown to expand, develop thrombus and rupture in areas of low WSS. Here we show that AAAs with larger iliac bifurcation angles have higher WSS, potentially reducing the likelihood of rupture. Furthermore, ECAP was lower in AAA geometries with larger iliac bifurcation angles, implying less likelihood of thrombus development and wall degeneration. Therefore our findings could help explain the clinical observation of lower rupture rates associated with AAAs with large iliac bifurcation angles.  相似文献   

17.
Endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms results in redirection of blood through the deployed endograft (EG). Even though EVAR is clinically effective, the absolute flow restoration is not warranted. Our purpose was to compare the physiological with the post-EVAR infrarenal flow conditions. We developed patient-specific models based on computed tomography data of five healthy volunteers and ten patients treated with the Endurant® stent-graft system. Wall shear stress (WSS), helicity, pressure and velocity fields were calculated using computational fluid dynamics. The results showed a decrease of peak WSS on the part of the EG that resides in the iliac arteries, compared to the physiological value (p = 0.01). At the abdominal part, the average helicity seems to increase after EVAR, while at the iliac arteries part, the intensity of helical flow seems physiological. Pressure drop and peak velocity in the iliac arteries part are lower than the physiological values (p = 0.04). The comparison revealed that most hemodynamic properties converge to normal levels at the abdominal part whereas statistically significant variations were observed in the iliac arteries part. The delineation of the differences between physiological and postoperative flow data could pave the way for the improvement of EG designs.  相似文献   

18.
Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared using an idealised AAA geometry. There was good agreement between the numerical and experimental results. At the proximal and distal end of the AAA model, the maximum differences in principle strain for an internal pressure of 120 mmHg had differences ranging from 0.03 to 10.01%. The maximum difference in principle strain for the photoelastic and the finite element model at a pressure of 120 mmHg was 0.167 and 0.158, respectively. The current research strengthens the case for using FEA as an adjunct to the current clinical practice of utilising diameter measurement for intervention timing.  相似文献   

19.
A reproducible swine thoracic aortic aneurysm (TAA) model is useful for investigating new therapeutic interventions. We report a surgical method for creating a reproducible swine saccular TAA model. We used eight female swine weighing 20–25 kg (LWD; ternary species). All procedures were performed under general anesthesia and involved left thoracotomy. Following aortic cross-clamping, the thoracic aorta was surgically dissected and the media and intima were resected, and the dissection plane was extended by spreading the outer layer for aneurysmal space. Subsequently, only the adventitial layer of the aorta was sutured. At 2 weeks after these procedures, angiography and computed tomography were performed. After follow-up imaging, the model animals were euthanized. Macroscopic, histological, and immunohistological examinations were performed. All model animals survived, and a saccular TAA was confirmed by follow-up imaging in all cases. The mean length of the shorter and the longer aortic diameter after the procedure were 14.01 ± 1.0 mm and 18.35 ± 1.4 mm, respectively (P<0.001). The rate of increase in the aortic diameter was 131.7 ± 13.8%, and the mean length of aneurysmal change at thoracic aorta was 22.4 ± 1.9 mm. Histological examination revealed intimal tears and defects of elastic fibers in the media. Immunostaining revealed MMP-2 and MMP-9 expressions at the aneurysm site. We report our surgical method for creating a swine saccular TAA model. Our model animal may be useful to investigate new therapeutic interventions for aortic disease.  相似文献   

20.
Until recently, heart valve failure has been treated adopting open-heart surgical techniques and cardiopulmonary bypass. However, over the last decade, minimally invasive procedures have been developed to avoid high risks associated with conventional open-chest valve replacement techniques. Such a recent and innovative procedure represents an optimal field for conducting investigations through virtual computer-based simulations: in fact, nowadays, computational engineering is widely used to unravel many problems in the biomedical field of cardiovascular mechanics and specifically, minimally invasive procedures. In this study, we investigate a balloon-expandable valve and we propose a novel simulation strategy to reproduce its implantation using computational tools. Focusing on the Edwards SAPIEN valve in particular, we simulate both stent crimping and deployment through balloon inflation. The developed procedure enabled us to obtain the entire prosthetic device virtually implanted in a patient-specific aortic root created by processing medical images; hence, it allows evaluation of postoperative prosthesis performance depending on different factors (e.g. device size and prosthesis placement site). Notably, prosthesis positioning in two different cases (distal and proximal) has been examined in terms of coaptation area, average stress on valve leaflets as well as impact on the aortic root wall. The coaptation area is significantly affected by the positioning strategy ( ? 24%, moving from the proximal to distal) as well as the stress distribution on both the leaflets (+13.5%, from proximal to distal) and the aortic wall ( ? 22%, from proximal to distal). No remarkable variations of the stress state on the stent struts have been obtained in the two investigated cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号