首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of ankle kinematics and plantar pressure from mid-range barefoot running on T2 relaxation times of tibiotalar cartilage is unknown. This study aimed to quantitatively evaluate the T2 relaxation time of tibiotalar cartilage and ankle biomechanics following 5 km barefoot running. Twenty healthy runners (who had no 5 km barefoot running experience) underwent 3.0-Tesla magnetic resonance (MR) scans and assessment of running gait before and after 5 km barefoot running. Participants were divided into two groups consisting of marathon-experienced (n = 10) and novice (n = 10) with equal number of males and females in each group. Three musculoskeletal radiologists measured T2 relaxation times in 18 regions of the ankle cartilage: anterior zone, central zone, and posterior zone, or lateral, middle, and medial sections in the sagittal plane. Three-dimensional ankle kinetics, kinematics, and plantar pressure were all also assessed during barefoot running. In the novice group, the T2 relaxation time in the posterior zone of tibial cartilage (p = 0.001) and lateral section in both tibial (p = 0.02) and talar (p = 0.02) cartilage were significantly increased after barefoot running. Ankle kinematics exhibited significant changes in females. Plantar loading was shifted from the medial to lateral aspect after running. This included a significant reduction in the loading under the toes and the 1st, 2nd and 3rd metatarsals, with a significant increase under the 4th and 5th metatarsals and lateral midfoot. The results suggest that plantar pressure may directly lead to local increases in cartilage T2 signal, which was not associated with changes in ankle kinematics.  相似文献   

2.
The purpose of this study was to assess the validity of v amax as an indicator of middle-distance running performance in sub-elite young runners, amax being defined as the quotient maximal oxygen uptake (V˙O 2max) divided by the net energy cost of running (C r) on a treadmill at a submaximal running velocity (280 m · min−1). The V˙O 2max, ventilatory threshold, amax, and C r were assessed in 39 young male sub-elite runners having only small variations in performance level. The relationship between each variable and running performance (at 1500 m, 3000 m, and 5000 m) was evaluated. A trend toward a negative correlation existed between C r and performance although this was not significant. The V˙O 2max and amax were significantly related to performance. The amax accounted for around 50% of the variability in performance whereas other physiological variables selected in this study were responsible, at best, for approximately 39%. The results presented in this study suggested that amax was a useful indicator of middle-distance running performance in sub-elite young runners with similar performance levels as well as in top elite athletes. Accepted: 19 August 1997  相似文献   

3.
Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2?mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7?MPa for trabecular bone while values ranging from 73 up to 118?MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21?MPa for trabecular bone while values at 150?MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2?MPa while von Mises stress values at 15?MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5?MPa, while von Mises stress values at 35?MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.  相似文献   

4.
Magnetic resonance (MR) imaging has been widely used to evaluate the thickness and volume of articular cartilage both in vivo and in vitro. While morphological information on the cartilage can be obtained using MR images, image processing for extracting geometric boundaries of the cartilage may introduce variations in the thickness of the cartilage. To evaluate the variability of using MR images to construct finite element (FE) knee cartilage models, five investigators independently digitized the same set of MR images of a human knee. The topology of cartilage thickness was determined using a minimal distance algorithm. Less than 8 percent variation in cartilage thickness was observed from the digitized data. The effect of changes in cartilage thickness on contact stress analysis was then investigated using five FE models of the knee. One FE model (average FE model) was constructed using the mean values of the digitized contours of the cartilage, and the other four were constructed by varying the thickness of the average FE model by +/- 5 percent and +/- 10 percent, respectively. The results demonstrated that under axial tibial compressive loading (up to 1,400 N), variations of cartilage thickness caused by digitization of MR images may result in a difference of approximately 10 percent in peak contact stresses (surface pressure, von Mises stress, and hydrostatic pressure) in the cartilage. A reduction of cartilage thickness caused increases of contact stresses, while an increase of cartilage thickness reduced contact stresses. Furthermore, the effect of variation of material properties of the cartilage on contact stress analysis was investigated. The peak contact stress increased almost linearly with the Young's modulus of the cartilage. The peak von Mises stress was dramatically reduced when the Poisson,s ratio was increased from 0.05 to 0.49 under an axial compressive load of 1,400 N, while peak hydrostatic pressure was dramatically increased. Peak surface pressure was also increased with the Poisson's ratio, but with a lower magnitude compared to von Mises stress and hydrostatic pressure. In conclusion, the imaging process may cause 10 percent variations in peak contact stress, and the predicted stress distribution is sensitive to the accuracy of the material properties of the cartilage model, especially to the variation of Poisson's ratio.  相似文献   

5.
IntroductionFoot and ankle impact injury is common in geriatric trauma and often leads to fracture of rearfoot, including calcaneus and talus. The objective of this study was to assess the influence of foot impact on the risk of calcaneus and talus fracture via finite element analysis.MethodsA three-dimensional finite element model of foot and ankle was constructed based on magnetic resonance images of a female aged 28. The foot sustained a 7-kg passive impact through a foot plate. The simulated impact velocities were from 2.0 to 7.0 m/s with 1.0 m/s interval.ResultsAt 5.0 m/s impact velocity, the maximum von Mises stress of the trabecular calcaneus and talus were 3.21MPa and 2.41MPa respectively, while that of the Tresca stress were 3.46MPa and 2.55MPa. About 94% and 84% of the trabecular calcaneus and talus exceeded the shear yielding stress, while 21.7% and 18.3% yielded the compressive stress. The peak stresses were distributed around the talocalcaneal articulation and the calcaneal tuberosity inferiorly, which corresponded to the common fracture sites.ConclusionsThe prediction in this study showed that axial compressive impact at 5.0 m/s could produce considerable yielding of trabecular bone in both calcaneus and talus, dominantly by shear and compounded with compression that predispose the rearfoot in the risk of fracture. This study suggested the injury pattern and fracture mode of high energy trauma that provides insights in injury prevention and fracture management.  相似文献   

6.
The role of anaerobic ability in middle distance running performance   总被引:5,自引:0,他引:5  
The purpose of this study was to assess the relationship between anaerobic ability and middle distance running performance. Ten runners of similar performance capacities (5 km times: 16.72, SE 0.2 min) were examined during 4 weeks of controlled training. The runners performed a battery of tests each week [maximum oxygen consumption (VO2max), vertical jump, and Margaria power run] and raced 5 km three times (weeks 1, 2, 4) on an indoor 200-m track (all subjects competing). Regression analysis revealed that the combination of time to exhaustion (TTE) during the VO2max test (r2 = 0.63) and measures from the Margaria power test (W.kg-1, r2 = 0.18; W, r2 = 0.05) accounted for 86% of the total variance in race times (P less than 0.05). Regression analysis demonstrated that TTE was influenced by both anaerobic ability [vertical jump, power (W.kg-1) and aerobic capacity (VO2max, ml.kg-1.min-1)]. These results indicate that the anaerobic systems influence middle distance performance in runners of similar abilities.  相似文献   

7.
Correlation of the mean and standard deviation of trabecular stresses has been proposed as a mechanism by which a strong relationship between the apparent strength and stiffness of cancellous bone can be achieved. The current study examined whether the relationship between the mean and standard deviation of trabecular von Mises stresses can be generalized for any group of cancellous bone. Cylindrical human vertebral cancellous bone specimens were cut in the infero-superior direction from T12 of 23 individuals (inter-individual group). Thirty nine additional specimens were prepared similarly from the T4-T12 and L2-L5 vertebrae of a 63 year old male (intra-individual group). The specimens were scanned by micro-computed tomography (microCT) and trabecular von Mises stresses were calculated using finite element modeling. The expected value, standard deviation and coefficient of variation of the von Mises stress were calculated form a three-parameter Weibull function fitted to von Mises stress data from each specimen. It was found that the average and standard deviation of trabecular von Mises shear stress were: (i) correlated with each other, supporting the idea that high correlation between the apparent strength and stiffness of cancellous bone can be achieved through controlling the trabecular level shear stress variations, (ii) dependent on anatomical site and sample group, suggesting that the variation of stresses are correlated to the mean stress to different degrees between vertebrae and individuals, and (iii) dependent on bone volume fraction, consistent with the idea that shear stress is less well controlled in bones with low BV/TV. The conversion of infero-superior loading into trabecular von Mises stresses was maximum for the tissue at the junction of the thoracic and lumbar spine (T12-L1) consistent with this junction being a common site of vertebral fracture.  相似文献   

8.
PurposeTo compare the acute effect of running and bicycling of an equivalent cumulative load on knee cartilage composition and morphometry in healthy young men. A secondary analysis investigated the relationship between activity history and the change in cartilage composition after activity.MethodsIn fifteen men (25.8±4.2 years), the vertical ground reaction force was measured to determine the cumulative load exposure of a 15-min run. The vertical pedal reaction force was recorded during bicycling to define the bicycling duration of an equivalent cumulative load. On separate visits that were spaced on average 17 days apart, participants completed these running and bicycling bouts. Mean cartilage transverse relaxation times (T2) were determined for cartilage on the tibia and weight-bearing femur before and after each exercise. T2 was measured using a multi-echo spin-echo sequence and 3T MRI. Cartilage of the weight bearing femur and tibia was segmented using a highly-automated segmentation algorithm. Activity history was captured using the International Physical Activity Questionnaire.ResultsThe response of T2 to bicycling and running was different (p=0.019; mean T2: pre-running=34.27 ms, pre-bicycling=32.93 ms, post-running=31.82 ms, post-bicycling=32.36 ms). While bicycling produced no change (−1.7%, p=0.300), running shortened T2 (−7.1%, p<0.001). Greater activity history predicted smaller changes in tibial, but not femoral, T2.ConclusionsChanges in knee cartilage vary based on activity type, independent of total load exposure, in healthy young men. Smaller changes in T2 were observed after bicycling relative to running. Activity history was inversely related to tibial T2, suggesting cartilage conditioning.  相似文献   

9.
Zhang  Jiangbo  Zhang  Aobo  Han  Qing  Liu  Yang  Chen  Hao  Ma  Mingyue  Li  Yongyue  Chen  Bingpeng  Wang  Jincheng 《Biomechanics and modeling in mechanobiology》2023,22(3):961-970

Metal block augmentations are common solutions in treating bone defects of total knee revision. However, the stress shielding and poor osteointegration resulted from metal block application could not be neglected in bone defects restoration. In this study, a novel porous metal block was designed with topology optimization to improve biomechanical performance. The biomechanical difference of the topologically optimized block, solid Ti6Al4V block, and porous Ti6Al4V block in treating bone defects of total knee revision was compared by finite element analysis. The inhomogeneous femoral model was created according to the computed tomography data. Combined with porous structures, minimum compliance topology optimization subjected to the volume fraction constraint was utilized for the redesign of the metal block. The region of interest was defined as a 10 mm area of the distal femur beneath the contacting surface. The biomechanical performance of daily motions was investigated. The von Mises stress, the strain energy density of the region of interest, and the von Mises stress of metal blocks were recorded. The results were analyzed in SPSS. In terms of the region of interest, the maximum von Mises stress of the topological optimized group increased obviously, and its average stress was significantly higher than that of the other groups (p < 0.05). Moreover, the topologically optimized block group had the highest maximum strain energy density of the three groups, and the lowest maximum stress of block was also found in this group. In this study, the stress shielding reduction and stress transfer capability were found obviously improved through topology optimization. Therefore, the topological optimized porous block is recommended in treating bone defects of total knee revision. Meanwhile, this study also provided a novel approach for mechanical optimization in block designing.

  相似文献   

10.
Objectives: Although overuse running injury risks for the ankle and knee are high, the effect of different shoe designs on Achilles tendon force (ATF) and Patellofemoral joint contact force (PTF) loading rates are unclear. Therefore, the primary objective of this study was to compare the ATF at the ankle and the PTF and Patellofemoral joint stress force (PP) at the knee using different running shoe designs (forefoot shoes vs. normal shoes). Methods: Fourteen healthy recreational male runners were recruited to run over a force plate under two shoe conditions (forefoot shoes vs. normal shoes). Sagittal plane ankle and knee kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle, velocity, moment and power) and the ATF were calculated. Knee joint mechanics (knee joint angle velocity, moment and power) and the PTF and PP were also calculated. Results: No significant differences were observed in the PTF, ankle plantarflexion angle, ankle dorsiflexion power, peak vertical active force, contact time and PTF between the two shoe conditions. Compared to wearing normal shoes, wearing the forefoot shoes demonstrated that the ankle dorsiflexion angle, knee flexion velocity, ankle dorsiflexion moment extension, knee extension moment, knee extension power, knee flexion power and the peak patellofemoral contact stress were significantly reduced. However, the ankle dorsiflexion velocity, ankle plantarflexion velocity, ankle plantarflexion moment and Achilles tendons force increased significantly. Conclusions: These findings suggest that wearing forefoot shoes significantly decreases the patellofemoral joint stress by reducing the moment of knee extension, however the shoes increased the ankle plantarflexion moment and ATF force. The forefoot shoes effectively reduced the load on the patellofemoral joint during the stance phase of running. However, it is not recommended for new and novice runners and patients with Achilles tendon injuries to wear forefoot shoes.  相似文献   

11.
《Free radical research》2013,47(5):550-558
Abstract

Reactive oxygen species (ROS) are involved in both bone and cartilage physiology and play an important role in the pathogenesis of osteoporosis and osteoarthritis. The present study investigated the effect of running exercise on bone and cartilage in heterozygous manganese superoxide dismutase (SOD2)-deficient mice. It was hypothesized that exercise might induce an increased production of ROS in these tissues. Heterozygous SOD2-deficient mice should exhibit an impaired capability to compensate, resulting in an increased oxidative stress in cartilage and bone. Thirteen female wild type and 20 SOD2+/? mice (aged 16 weeks) were randomly assigned to a non-active wild type (SOD2+/+Con, n = 7), a trained wild type (SOD2+/+Run, n = 6), a non-active SOD2+/? (SOD2+/?Con, n = 9) and a trained SOD2+/? (SOD2+/?Run, n = 11) group. Training groups underwent running exercise on a treadmill for 8 weeks. In SOD2+/? mice elevated levels of 15-F2t-isoprostane and nitrotyrosine were detected in bone and articular cartilage compared to wild type littermates. In osteocytes the elevated levels of these molecules were found to be reduced after exercise while in chondrocytes they were increased by aerobic running exercise. The observed changes in oxidative and nitrosative stress did neither affect morphological, structural nor mechanical properties of both tissues. These results demonstrate that exercise might protect bone against oxidative stress in heterozygous SOD2-deficient mice.  相似文献   

12.
BackgroundUltramarathon is a high endurance exercise associated with a wide range of exercise-related problems, such as acute kidney injury (AKI). Early recognition of individuals at risk of AKI during ultramarathon event is critical for implementing preventative strategies.ObjectivesTo investigate the impact of speed variability to identify the exercise-related acute kidney injury anticipatively in ultramarathon event.MethodsThis is a prospective, observational study using data from a 100 km ultramarathon in Taipei, Taiwan. The distance of entire ultramarathon race was divided into 10 splits. The mean and variability of speed, which was determined by the coefficient of variation (CV) in each 10 km-split (25 laps of 400 m oval track) were calculated for enrolled runners. Baseline characteristics and biochemical data were collected completely 1 week before, immediately post-race, and one day after race. The main outcome was the development of AKI, defined as Stage II or III according to the Acute Kidney Injury Network (AKIN) criteria. Multivariate analysis was performed to determine the independent association between variables and AKI development.Results26 ultramarathon runners were analyzed in the study. The overall incidence of AKI (in all Stages) was 84.6% (22 in 26 runners). Among these 22 runners, 18 runners were determined as Stage I, 4 runners (15.4%) were determined as Stage II, and none was in Stage III. The covariates of BMI (25.22 ± 2.02 vs. 22.55 ± 1.96, p = 0.02), uric acid (6.88 ± 1.47 vs. 5.62 ± 0.86, p = 0.024), and CV of speed in specific 10-km splits (from secondary 10 km-split (10th – 20th km-split) to 60th – 70th km-split) were significantly different between runners with or without AKI (Stage II) in univariate analysis and showed discrimination ability in ROC curve. In the following multivariate analysis, only CV of speed in 40th – 50th km-split continued to show a significant association to the development of AKI (Stage II) (p = 0.032).ConclusionsThe development of exercise-related AKI was not infrequent in the ultramarathon runners. Because not all runners can routinely receive laboratory studies after race, variability of running speed (CV of speed) may offer a timely and efficient tool to identify AKI early during the competition, and used as a surrogate screening tool, at-risk runners can be identified and enrolled into prevention trials, such as adequate fluid management and avoidance of further NSAID use.  相似文献   

13.
The present study reports on the finite element analysis (FEA) of the femoral head in a process of preparation for a program for the realistic simulation of correctional osteotomies of the proximal femur. While the material properties have been studied extensively, only few publications consider the influence of the cartilage layer geometry on FE stimulation of the hip joint. Various models of the femoral head with and without the cartilage layer are generated and analysed. On looking at the maximum surface stresses, we found a strong influence of the cartilage layer and the subchondral osseous layer on the magnitude of the von Mises equivalent stress. The model with an anatomically realistic cartilage layer and compact bone shows stresses of between 4 and 5.5 MPa, depending on the position of the joint, while the model with a concentric cartilage layer has a maximum von Mises stress of 0.8 MPa. Only on simulation of a "realistic" cartilage layer, with a maximum thickness at the "pole" and minimum thickness at the "equator" do the changes in stress distribution--determined by changes in the position of the femoral head--become visible. Owing to major artefacts and the inability to create a realistic cartilage layer, voxel-based models of the femur are not suitable for the simulation of the femoral head surface.  相似文献   

14.
To assess the most important determinant for successful distance running (800 m, 1500 m and 3000 m events) in female athletes, measurements of several anaerobic indices were made (peak power, mean power) using the Wingate anaerobic test (WAnT), and aerobic indices such as oxygen uptake (VO2) or running velocity (v) at lactate threshold (LT), VO2 or v at onset of blood lactate accumulation (OBLA), running economy (RE), and maximal oxygen uptake were determined using the incremental treadmill test. The RE was represented by a VO2 value measured at 240 m.min-1 of a standard treadmill velocity. A stepwise multiple regression analysis (SAS stepwise procedure) combined the best features of forward inclusion and backward elimination to determine the most important factors in predicting the performance of running these distances as dependent variables. The stepwise procedure showed that the blood lactate variables such as LT and/or OBLA are highly correlated with, and contributed to predicting performance running 800 m-3000 m, whereas the anaerobic component was related only to running 800 m. In conclusion, blood lactate variables account for a large part of the variation in distance running performance in female as in male runners. The component of the anaerobic system which can be measured by the WAnT was shown to contribute to performance in running 800 m, but not in longer distances.  相似文献   

15.
ObjectiveIn this research it was aimed to evaluate stress distribution on the implants supporting a complete overdenture in addition to compare between two different types of low-profile attachments for implant-retained mandibular overdenture with two techniques (with/without using connecting bar).Materials and methodsTwo 3D finite element models were constructed simulating supported lower complete overdenture with two implants and with two implants and bar. Where, models components were modeled in 3D on commercial general purpose CAD/CAM software. Four runs were carried out, two runs on each model, as linear static analysis.ResultsUsing bar is generally preferred for mucosa and cortical bone, while its effect can be considered as negligible on overdenture. On the other hand, it slightly increases the stresses on spongy bone. Using bar ensures the same level of energy transfer to the spongy bone and increases its maximum Von Mises stresses by about 50%. In addition, increase in maximum Von Mises stress was noticed by about 1% on cortical bone.ConclusionUsing bar is not recommended for patients with flat ridge.  相似文献   

16.
Epidemiological research suggests that regular physical activity confers beneficial effects that mediate an anti-tumor response and may reduce cancer recurrence. It is unclear what amount of physical activity is necessary to exert such a protective effect and what mechanisms are involved. We investigated the effects of voluntary wheel running on tumor progression and cytokine gene expression in the transgenic polyoma middle T oncoprotein (PyMT) mouse model of invasive breast cancer. Runners showed significantly reduced tumor sizes compared with non-runners after 3 weeks of running (p≤0.01), and the greater the running distance the smaller the tumor size (Pearson''s r = −0.61, p≤0.04, R2 = 0.38). Mice running greater than 150 km per week had a significantly attenuated tumor size compared with non-runners (p≤0.05). Adipose tissue mass was inversely correlated with tumor size in runners (Pearson''s r = −0.77, p = 0.014) but not non-runners. Gene expression of CCL22, a cytokine associated with recruitment of immunosuppressive T regulatory cells, was decreased in tumors of runners compared to non-runners (p≤0.005). No differences in tumor burden or metastatic burden were observed between runners and non-runners after ten weeks of running when the study was completed. We conclude that voluntary wheel running in PyMT mice correlates with an attenuation in tumor progression early during the course of invasive breast cancer. This effect is absent in the later stages of overwhelming tumor burden even though cytokine signaling for immunosuppressive regulatory T cells was down regulated. These observations suggest that the initiation of moderate exercise training for adjunctive therapeutic benefit early in the course of invasive breast cancer should be considered for further investigation.  相似文献   

17.
《Free radical research》2013,47(3):322-331
Abstract

Many potentially significant genetic variants related to oxidative stress have been identified and performance in endurance sports is a multi-factorial phenotype. Thus, it was decided to investigate the influences of the haptoglobin (Hp), MnSOD (Val9Ala), CAT (21A/T), GPX1 (Pro198Leu), ACE, glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) genes' polymorphisms on the oxidative stress and damage suffered by human athletes (runners). Blood samples taken immediately after a race were submitted to genotyping, comet and TBARS assays, biochemical analyses of creatine kinase (CK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). MnSOD significantly influenced results of CK and a possible association between Hp1F-1S and Hp1S-2 genotypes with a superior TBARS values was found. Higher or lower TBARS and CK values or DNA damage also depended on the interaction between Hp and ACE or GST genotypes, indicating that MnSOD and Hp polymorphisms can be determining factors in performance, at least for runners.  相似文献   

18.
19.
In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.  相似文献   

20.

Purpose

Walking is purported to reduce the risk of atrial fibrillation by 48%, whereas jogging is purported to increase its risk by 53%, suggesting a strong anti-arrhythmic benefit of walking over running. The purpose of these analyses is to compare incident self-reported physician-diagnosed cardiac arrhythmia to baseline energy expenditure (metabolic equivalent hours per day, METhr/d) from walking, running and other exercise.

Methods

Proportional hazards analysis of 14,734 walkers and 32,073 runners.

Results

There were 1,060 incident cardiac arrhythmias (412 walkers, 648 runners) during 6.2 years of follow-up. The risk for incident cardiac arrhythmias declined 4.4% per baseline METhr/d walked by the walkers, or running in the runners (P = 0.0001). Specifically, the risk declined 14.2% (hazard ratio: 0.858) for 1.8 to 3.6 METhr/d, 26.5% for 3.6 to 5.4 METhr/d, and 31.7% for ≥5.4 METhr/d, relative to <1.8 METhr/d. The risk reduction per METhr/d was significantly greater for walking than running (P<0.01), but only because walkers were at 34% greater risk than runners who fell below contemporary physical activity guideline recommendations; otherwise the walkers and runners had similar risks for cardiac arrhythmias. Cardiac arrhythmias were unrelated to walking and running intensity, and unrelated to marathon participation and performance.

Conclusions

The risk for cardiac arrhythmias was similar in walkers and runners who expended comparable METhr/d during structured exercise. We found no significant risk increase for self-reported cardiac arrhythmias associated with running distance, exercise intensity, or marathon participation. Rhythm abnormalities were based on self-report, precluding definitive categorization of the nature of the rhythm disturbance. However, even if the runners’ arrhythmias include sinus bradycardia due to running itself, there was no increase in arrhythmias with greater running distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号