首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to evaluate a dynamic multibody model developed to characterize the influence of tibial tuberosity realignment procedures on patellofemoral motion and loading. Computational models were created to represent four knees previously tested at 40°, 60°, and 80° of flexion with the tibial tuberosity in a lateral, medial and anteromedial positions. The experimentally loaded muscles, major ligaments of the knee, and patellar tendon were represented. A repeated measures ANOVA with post-hoc testing was performed at each flexion angle to compare data between the three positions of the tibial tuberosity. Significant experimental trends for decreased patella flexion due to tuberosity anteriorization and a decrease in the lateral contact force due to tuberosity medialization were reproduced computationally. The dynamic multibody modeling technique will allow simulation of function for symptomatic knees to identify optimal surgical treatment methods based on parameters related to knee pathology and pre-operative kinematics.  相似文献   

2.
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.  相似文献   

3.
The mechanical environment during stair climbing has been associated with patellofemoral pain, but the contribution of loading to this condition is not clearly understood. It was hypothesized that the loading conditions during stair climbing induce higher patellofemoral pressures, a more lateral force distribution on the trochlea and a more lateral shift and tilt of the patella compared to walking at early knee flexion. Optical markers for kinematic measurements were attached to eight cadaveric knees, which were loaded with muscle forces at instances of walking and stair climbing cycles at 12° and 30° knee flexion. Contact mechanics were determined using a pressure sensitive film. At 12° knee flexion, stair climbing loads resulted in higher peak pressure (p=0.012) than walking, more lateral force distribution (p=0.012) and more lateral tilt (p=0.012), whilst mean pressure (p=0.069) and contact area (p=0.123) were not significantly different. At 30° knee flexion, although stair climbing compared to walking loads resulted in significantly higher patellofemoral mean (p=0.012) and peak pressures (p=0.012), contact area (p=0.025), as well as tilt (p=0.017), the medial–lateral force distribution (p=0.674) was not significantly different. No significant differences were observed in patellar shift between walking and stair climbing at either 12° (p=0.093) or 30° (p=0.575) knee flexion. Stair climbing thus leads to more challenging patellofemoral contact mechanics and kinematics than level walking at early knee flexion. The increase in patellofemoral pressure, lateral force distribution and lateral tilt during stair climbing provides a possible biomechanical explanation for the patellofemoral pain frequently experienced during this activity.  相似文献   

4.
One possible cause of patellofemoral pain syndrome is excessive lateral force acting on the patella. Although several treatment methods focus on decreasing the lateral force acting on the patella, the relationship between the lateral force and the patellofemoral contact pressure distribution is unclear. A computational model has been developed to determine how loading variations alter the patellofemoral force and pressure distributions for individual knees. The model allows variation in the quadriceps and patella tendon forces, and calculates the predicted contact pressure distribution using the discrete element analysis technique. To characterize the accuracy of the model, four cadaver knees were flexed on a knee simulator with three initial Q-angles, while recording the force and pressure distributions with a pressure sensor. A model of each knee was created from CT data. Using the external force applied to the knee, the geometry of the knee, and the quadriceps origin as input, the pressure distribution was calculated during flexion. Similar trends were noted for the computational and experimental results. The percentage of the total force applied to the lateral cartilage increased with the Q-angle. The maximum contact pressure increased during flexion. The maximum lateral contact pressure increased with the Q-angle for three knees. For the other knee, increasing the Q-angle decreased the maximum lateral pressure. The maximum medial contact pressure decreased as the Q-angle increased. By characterizing the influence of patellofemoral loading on the force and pressure distributions, the computational model could be used to evaluate treatment methods prescribed for patellofemoral pain.  相似文献   

5.
A study was performed to evaluate a computational model used to characterize the influence of vastus medialis obliquus (VMO) function on the patellofemoral pressure distribution. Ten knees were tested in vitro at 40°, 60° and 80° of knee flexion with quadriceps loads applied to represent a normal VMO, and with the VMO force decreased by approximately 50% to represent a weak VMO. The tests were performed with the cartilage intact and with a full thickness cartilage lesion centered on the lateral facet of the patella. The experimental tests were replicated computationally by applying discrete element analysis to a model of each knee constructed from MRI images. Repeated measures statistical comparisons were used to compare computational to experimental data and identify significant (p<0.05) differences due to the lesion and the applied VMO force. Neither the lateral force percentage nor the maximum lateral pressure varied significantly between the computational and experimental data. Creating a lesion significantly increased the maximum lateral pressure for all comparisons, except for the experimental data at 40°. Both computationally and experimentally, decrease in the VMO force increased the lateral force percentage by approximately 10% for all cases, and each increase was statistically significant. The maximum lateral pressure increase was typically less than 10% but was still significant for the majority of comparisons focused on the VMO strength. The results indicate that computational modeling can be used to characterize how varying quadriceps loading influences the patellofemoral force and pressure distributions while varying the condition of cartilage.  相似文献   

6.
Although the relationship between contact area and pressure under physiological loading has been described in the feline patellofemoral joint, this interaction has only been examined under simplified loading conditions and/or considerably lower forces than those occurring during demanding activities in humans. We hypothesized that patellofemoral contact area increases non-linearly under an increasing joint reaction force to regulate patellofemoral pressure. Eight human cadaveric knees were ramp loaded with muscle forces representative of the stance phase of stair climbing at 30° knee flexion. Continuous pressure data were acquired with a pressure sensitive film that was positioned within the patellofemoral joint. While pressure was linearly dependent upon the resulting joint reaction force, contact area asymptotically approached a maximum value and reached 95% of this maximum at patellofemoral forces of 349–723 N (95% CI). Our findings indicate that the regulatory influence of increasing contact area to protect against high patellofemoral pressure is exhausted at relatively low loads.  相似文献   

7.
The aim of this study was to evaluate the accuracy with which mobile biplane X-ray imaging can be used to measure patellofemoral kinematics of the intact knee during overground gait. A unique mobile X-ray imaging system tracked and recorded biplane fluoroscopic images of two human cadaver knees during simulated overground walking at a speed of 0.7 m/s. Six-degree-of-freedom patellofemoral kinematics were calculated using a bone volumetric model-based method and the results then compared against those derived from a gold-standard bead-based method. RMS errors for patellar anterior translation, superior translation and lateral shift were 0.19 mm, 0.34 mm and 0.37 mm, respectively. RMS errors for patellar flexion, lateral tilt and lateral rotation were 1.08°, 1.15° and 1.46°, respectively. The maximum RMS error for patellofemoral translations was approximately one-half that reported previously for tibiofemoral translations using the same mobile X-ray imaging system while the maximum RMS error for patellofemoral rotations was nearly two times larger than corresponding errors reported for tibiofemoral rotations. The lower accuracy in measuring patellofemoral rotational motion is likely explained by the symmetric nature of the patellar geometry and the smaller size of the patella compared to the tibia.  相似文献   

8.
The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100° to 0° flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4 mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7°, 1.2° and 1.5° for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60° and 75° flexion. The increase was 5.2°, 9.5° and 13° in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.  相似文献   

9.
Patellofemoral pain is a common knee disorder with a multi-factorial etiology related to abnormal patellar tracking. Our hypothesis was that the pattern of three-dimensional rotation and translation of the patella induced by selective activation of individual quadriceps components would differ between subjects with patellofemoral pain and healthy subjects. Nine female subjects with patellofemoral pain and seven healthy female subjects underwent electrical stimulation to selectively activate individual quadriceps components (vastus medialis obliquus, VMO; vastus medialis lateralis, VML; vastus lateralis, VL) with the knee at 0° and 20° flexion, while three-dimensional patellar tracking was recorded. Normalized direction of rotation and direction of translation characterized the relative amplitudes of each component of patellar movement. VMO activation in patellofemoral pain caused greater medial patellar rotation (distal patellar pole rotates medially in frontal plane) at both knee positions (p<0.01), and both VMO and VML activation caused increased anterior patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects at 20° knee flexion. VL activation caused more lateral patellar translation (p<0.001) in patellofemoral pain compared to healthy subjects. In healthy subjects the 3-D mechanical action of the VMO is actively modulated with knee flexion angle while such modulation was not observed in PFP subjects. This could be due to anatomical differences in the VMO insertion on the patella and medial quadriceps weakness. Quantitative evaluation of the influence of individual quadriceps components on patellar tracking will aid understanding of the knee extensor mechanism and provide insight into the etiology of patellofemoral pain.  相似文献   

10.
Tendon orientations in knee models are often taken from cadaver studies. The aim of this study was to investigate the effect of muscle activation on tendon orientation in vivo. Magnetic resonance imaging (MRI) images of the knee were made during relaxation and isometric knee extensions and flexions with 0 degrees , 15 degrees and 30 degrees of knee joint flexion. For six tendons, the orientation angles in sagittal and frontal plane were calculated. In the sagittal plane, muscle activation pulled the patellar tendon to a more vertical orientation and the semitendinosus and sartorius tendons to a more posterior orientation. In the frontal plane, the semitendinosus had a less lateral orientation, the biceps femoris a more medial orientation and the patellar tendon less medial orientation in loaded compared to unloaded conditions. The knee joint angle also influenced the tendon orientations. In the sagittal plane, the patellar tendon had a more anterior orientation near full extension and the biceps femoris had an anterior orientation with 0 degrees and 15 degrees flexions and neutral with 30 degrees flexions. Within 0 degrees to 30 degrees of flexion, the biceps femoris cannot produce a posterior shear force and the anterior angle of the patellar tendon is always larger than the hamstring tendons. Therefore, co-contraction of the hamstring and quadriceps is unlikely to reduce anterior shear forces in knee angles up to 30 degrees . Finally, inter-individual variation in tendon angles was large. This suggests that the amount of shear force produced and the potential to counteract shear forces by co-contraction is subject-specific.  相似文献   

11.
The object of this study is to develop a three-dimensional mathematical model of the patello-femoral joint, which is modelled as two rigid bodies representing a moving patella and a fixed femur. Two-point contact was assumed between the femur and patella at the medial and lateral sides and in the analysis, the femoral and patellar articular surfaces were mathematically represented using Coons' bicubic surface patches. Model equations include six equilibrium equations and eleven constraints: six contact conditions, four geometric compatibility conditions, and the condition of a rigid patellar ligament; the model required the solution of a system of 17 nonlinear equations in 17 unknowns, its response describing the six-degress-of-freedom patellar motions and the forces acting on the patella. Patellar motions are described by six motion parameters representing the translations and rotations of the patella with respect to the femur. The forces acting on the patella include the medial and lateral component of patello-femoral contact and the patellar ligament force, all of which were represented as ratios to the quadriceps tendon force. The model response also includes the locations of the medial and lateral contact points on the femur and the patella. A graphical display of its response was produced in order to visualize better the motion of the components of the extensor mechanism.Model calculations show good agreement with experimental results available from the literature. The patella was found to move distally and posteriorly on the femoral condyles as the knee was flexed from full extension. Results indicate that the relative orientation of the patellar ligament with respect to the patella remains unchanged during this motion. The model also predicts a patellar flexion which always lagged knee flexion.Our calculations show that as the angle of knee flexion increased, the lateral contact point moved distally on the femur without moving significantly either medially or laterally. The medial contact point also moved distally on the femur but moved medially from full extension to about 40° of knee flexion, then laterally as the knee flexion angle increased. The lateral contact point on the patella did not change significantly in the medial and lateral direction as the knee was flexed; however, this point moved proximally toward the basis of the patella with knee flexion. The medial contact point also moved proximally on the patella with knee flexion, and in a similar manner the medial contact point on the patella moved distally with flexion from full extension to about 40° of flexion. However, as the angle of flexion increased, the medial contact point did not move significantly in the medial-lateral direction.Model calculations also show that during the simulated knee extension exercise, the ratio of the force in the patellar ligament to the force in the quadriceps tendon remains almost unchanged for the first 30° of knee flexion, then decreases as the angle of knee flexion increases. Furthermore, model results show that the lateral component of the patello-femoral contact force is always greater than the medial component, both components increasing with knee flexion.  相似文献   

12.
Few studies have investigated the function of the patellar tendon in-vivo. This study quantified the three-dimensional (3D) kinematics of the patellar tendon during weight-bearing flexion. Eleven subjects were imaged using magnetic resonance (MR). Sagittal plane images were outlined to create a 3D model of the patella, tibia, and femur and included the attachment sites of the patellar tendon. Each attachment site was divided into central, medial, and lateral thirds. Next, the subjects were imaged using fluoroscopy from two orthogonal directions while performing a single-leg lunge. The models and fluoroscopic images were used to reproduce the motion of the patella, tibia, and femur. The apparent elongation, sagittal plane angle, and coronal plane angle of each third of the patellar tendon were measured from the relative motion of the attachment sites. All three portions of the patellar tendon deformed similarly with flexion. The length of the patellar tendon significantly from full extension to 30 degrees . From 30 degrees -110 degrees , no significant change in the length of the patellar tendon was observed. The patellar tendon was oriented anteriorly at flexion angles less than 60 degrees and posteriorly thereafter. From full extension to 60 degrees , the medial orientation of the patellar tendon decreased significantly with flexion. These data may have important implications for anterior cruciate ligament reconstruction using patellar tendon autografts and for the design of rehabilitation regimens for patients of patellar tendon repair.  相似文献   

13.
Patient selection for lateral retinacular release (LRR) and its efficacy are controversial. Iatrogenic medial subluxation can occur with inappropriate LRR. The aim of this study was to determine the reduction in patellofemoral stability with progressively more extensive LRR. The force required to displace the patella 10 mm medially and laterally in nine cadaveric knees was measured with and without loading of the quadriceps and iliotibial band. The knee was tested intact, then after progressive release beginning proximal to the patella (PR), the mid-level between the proximal and distal limit of the patella (MR) where the fibres are more transverse, then distally till Gerdy's tubercle (DR) and finally the joint capsule (CR). Both medial and lateral stability decreased with progressive releases, larger for the medial. The MR caused a significant reduction of lateral stability between 30° and 90° of knee flexion. There was an 8% reduction in medial stability at 0° flexion with a complete LRR (DR). A comparable reduction in medial stability in the loaded knee at 20° and 30° flexion was obtained with MR alone, with no further reduction after DR. A capsular release caused a further reduction in medial stability at 0° and 20° and this was marked in the unloaded knee. In extension, the main lateral restraint was the joint capsule. At 30° flexion, the transverse fibres were the main contributor to the lateral restraint.  相似文献   

14.
The purpose of this study was to evaluate the effects of variations in quadriceps muscle forces on patellofemoral stress. We created subject-specific finite element models for 21 individuals with chronic patellofemoral pain and 16 pain-free control subjects. We extracted three-dimensional geometries from high resolution magnetic resonance images and registered the geometries to magnetic resonance images from an upright weight bearing squat with the knees flexed at 60°. We estimated quadriceps muscle forces corresponding to 60° knee flexion during a stair climb task from motion analysis and electromyography-driven musculoskeletal modelling. We applied the quadriceps muscle forces to our finite element models and evaluated patellofemoral cartilage stress. We quantified cartilage stress using an energy-based effective stress, a scalar quantity representing the local stress intensity in the tissue. We used probabilistic methods to evaluate the effects of variations in quadriceps muscle forces from five trials of the stair climb task for each subject. Patellofemoral effective stress was most sensitive to variations in forces in the two branches of the vastus medialis muscle. Femur cartilage effective stress was most sensitive to variations in vastus medialis forces in 29/37 (78%) subjects, and patella cartilage effective stress was most sensitive to variations in vastus medialis forces in 21/37 (57%) subjects. Femur cartilage effective stress was more sensitive to variations in vastus medialis longus forces in subjects classified as maltrackers compared to normal tracking subjects (p?=?0.006). This study provides new evidence of the importance of the vastus medialis muscle in the treatment of patellofemoral pain.  相似文献   

15.
Exercise responses and injury rates differ between individual hamstrings and this may be linked with their morphology. The aim of this study was to compare muscle length and tendon dimensions between the individual hamstrings at two knee joint angles using free hand three-dimensional ultrasound (3D US). Muscle-tendon length and distal tendon cross-sectional area (CSA), volume, length and echogenicity of biceps femoris long (BFlh) and short (BFsh) head, semimembranosus (SM) and semitendinosus (ST) of 16 individuals were measured using free-hand 3D US at 0° (full extension) and 45° of knee flexion. ST showed the greatest length than all muscles and BFsh the lowest (p < 0.05). No difference was observed between SM and BFlh length (p > 0.05). Of the four muscles, ST tendon was longer, with less volume and CSA but greater echogenicity than the other tendons. In contrast, SM and BFlh showed shorter tendons and lower echogenicity but a greater volume and CSA than ST (p < 0.05). Muscle and tendon lengthened from 45° to 0° knee flexion angle (p < 0.05) but this change was not statistically different between individual hamstrings (p > 0.05). Freehand 3D US indicated that hamstring muscle length and distal tendon dimensions differ between individual hamstrings. All muscles and tendons lengthened as the knee was extended but this change was similar for all individual hamstrings.  相似文献   

16.
Moment arm of the patellar tendon in the human knee   总被引:5,自引:0,他引:5  
The moment arm of the knee-extensor mechanism is described by the moment arm of the patellar tendon calculated with respect to the screw axis of the tibia relative to the femur. The moment arm may be found once the line of action of the patellar tendon and the position and orientation of the screw axis are known. In this study, the orientation of the patellar tendon and the position and orientation of the finite screw axis of the tibia relative to the femur were calculated from measurements of the three-dimensional positions of the bones obtained from fresh cadaver specimens. Peak values of the patellar tendon moment arm ranged from 4-6 cm for the six knees tested; the moment arm was maximum near 45 degrees of knee flexion. The moment arm of the patellar tendon was nearly equal to the shortest (perpendicular) distance between the line of action of the patellar tendon and the axis of rotation of the knee at all flexion angles, except near full extension. Near full extension, the angle between the patellar tendon and the screw axis was significantly less than 90 degrees, and the magnitude of the moment arm was then less than the perpendicular distance between these two lines. The patellar tendon moment arm remained roughly constant across individuals when normalized by femoral condyle width, suggesting that anatomical differences play a large role in determining the moment arm of the extensor mechanism.  相似文献   

17.
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young’s modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson’s correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young’s modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.  相似文献   

18.
A potential cause of non-contact anterior cruciate ligament (ACL) injury is landing on an extended knee. In line with this hypothesis, studies have shown that the ACL is elongated with decreasing knee flexion angle. Furthermore, at low flexion angles the patellar tendon is oriented to increase the anterior shear component of force acting on the tibia. This indicates that knee extension represents a position in which the ACL is taut, and thus may have an increased propensity for injury, particularly in the presence of excessive force acting via the patellar tendon. However, there is very little in vivo data to describe how patellar tendon orientation and ACL elongation interact during flexion. Therefore, this study measured the patellar tendon tibial shaft angle (indicative of the relative magnitude of the shear component of force acting via the patellar tendon) and ACL length in vivo as subjects performed a quasi-static lunge at varying knee flexion angles. Spearman rho rank correlations within each individual revealed that flexion angles were inversely correlated to both ACL length (rho = −0.94 ± 0.07, mean ± standard deviation, p < 0.05) and patellar tendon tibial shaft angle (rho = −0.99 ± 0.01, p < 0.05). These findings indicate that when the knee is extended, the ACL is both elongated and the patellar tendon tibial shaft angle is increased, resulting in a relative increase in anterior shear force on the tibia acting via the patellar tendon. Therefore, these data support the hypothesis that landing with the knee in extension is a high risk scenario for ACL injury.  相似文献   

19.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

20.
The purpose of this study was to provide the first in vivo 3-dimensional (3D) measures of knee extensor moment arms, measured during dynamic volitional activity. The hypothesis was that the vastus lateralis (VL) and vastus medialis (VM) have significant off-axis moment arms compared to the central quadriceps components. After obtaining informed consent, three 3D dynamic cine phase contrast (PC) MRI sets (x,y,z velocity and anatomic images) were acquired from 22 subjects during active knee flexion and extension. Using a sagittal-oblique and two coronal-oblique imaging planes, the origins and insertions of each quadriceps muscle were identified and tracked through each time frame by integrating the cine-PC velocity data. The moment arm (MA) and relative moment (RM, defined as the cross product of the tendon line-of-action and a line connecting the line-of-action with the patellar center of mass) were calculated for each quadriceps component. The tendencies of the VM and VL to produce patellar tilt were evenly balanced. Interestingly, the magnitude of RM-PSpin for the VM and VL is approximately four times greater than the magnitude of RM-PTilt for the same muscles suggesting that patellar spin may play a more important role in patellofemoral kinematics than previously thought. Thus, a force imbalance that leads to excessive lateral tilt, such as VM weakness in patellofemoral pain syndrome, would produce excessive negative spin (positive spin: superior patellar pole rotates laterally) and to a much greater degree. This would explain the increased negative spin found in recent studies of patellar maltracking. Assessing the contribution of each quadriceps component in three dimensions provides a more complete understanding of muscle functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号