共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitchell S. Hortin 《Computer methods in biomechanics and biomedical engineering》2016,19(14):1505-1518
Data has been published that quantifies the nonlinear, anisotropic material behaviour and pre-strain behaviour of the anterior longitudinal, supraspinous (SSL), and interspinous ligaments of the human lumbar spine. Additionally, data has been published on localized material properties of the SSL. These results have been incrementally incorporated into a previously validated finite element model of the human lumbar spine. Results suggest that the effects of increased ligament model fidelity on bone strain energy were moderate and the effects on disc pressure were slight, and do not justify a change in modelling strategy for most clinical applications. There were significant effects on the ligament stresses of the ligaments that were directly modified, suggesting that these phenomena should be included in FE models where ligament stresses are the desired metric. 相似文献
2.
Hae Won Choi 《Computer methods in biomechanics and biomedical engineering》2017,20(13):1431-1437
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant. 相似文献
3.
Z. El Ouaaid N. Arjmand M. Parnianpour 《Computer methods in biomechanics and biomedical engineering》2013,16(6):735-745
A novel optimisation algorithm is developed to predict coactivity of abdominal muscles while accounting for both trunk stability via the lowest buckling load (P cr) and tissue loading via the axial compression (F c). A nonlinear multi-joint kinematics-driven model of the spine along with the response surface methodology are used to establish empirical expressions for P cr and F c as functions of abdominal muscle coactivities and external load magnitude during lifting in upright standing posture. A two-component objective function involving F c and P cr is defined. Due to opposite demands, abdominal coactivities that simultaneously maximise P cr and minimise F c cannot exist. Optimal solutions are thus identified while striking a compromise between requirements on trunk stability and risk of injury. The oblique muscles are found most efficient as compared with the rectus abdominus. Results indicate that higher abdominal coactivities should be avoided during heavier lifting tasks as they reduce stability margin while increasing spinal loads. 相似文献
4.
Ugur M. Ayturk 《Computer methods in biomechanics and biomedical engineering》2013,16(8):695-705
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies. 相似文献
5.
T. Oktenoglu A. Kiapour A.F. Ozer I. Lazoglu T. Kaner 《Computer methods in biomechanics and biomedical engineering》2013,16(11):1252-1261
Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws. 相似文献
6.
Emily A. Bermel Victor H. Barocas 《Computer methods in biomechanics and biomedical engineering》2013,16(13):712-721
AbstractLow back pain (LBP) is the most common type of pain in America, and spinal instability is a primary cause. The facet capsular ligament (FCL) encloses the articulating joints of the spine and is of particular interest due to its high innervation – as instability ensues, high stretch values likely are a cause of this pain. Therefore, this work investigated the FCL's role in providing stability to the lumbar spine. A previously validated finite element model of the L4-L5 spinal motion segment was used to simulate pure moment bending in multiple planes. FCL failure was simulated and the following outcome measures were calculated: helical axes of motion, range of motion (ROM), bending stiffness, facet joint space, and FCL stretch. ROM increased, bending stiffness decreased, and altered helical axis patterns were observed with the removal of the FCL. Additionally, a large increase in FCL stretch was measured with diminished FCL mechanical competency, providing support that the FCL plays an important role in spinal stability. 相似文献
7.
Chaochao Zhou Thomas Cha 《Computer methods in biomechanics and biomedical engineering》2013,16(14):1126-1134
AbstractPrediction of the biomechanical effects of fusion surgery on adjacent segments is a challenge in computational biomechanics of the spine. In this study, a two-segment L3-L4-L5 computational model was developed to simulate the effects of spinal fusion on adjacent segment biomechanical responses under a follower load condition. The interaction between the degenerative segment (L4-5) and the adjacent segment (L3-4) was simulated using an equivalent follower spring. The spring stiffness was calibrated using a rigid fusion of a completely degenerated disc model at the L4-5 level, resulting in an upper bound response at the adjacent (L3-4) segment. The obtained upper bound equivalent follower spring was used to simulate the upper bound biomechanical responses of fusion of the disc with different degeneration grades. It was predicted that as the disc degeneration grade at the degenerative segment decreased, the effect on the adjacent segment responses decreased accordingly after fusion. The data indicated that the upper bound computational model can be a useful computational tool for evaluation of the interaction between segments and for investigation of the biomechanical mechanisms of adjacent segment degeneration after fusion. 相似文献
8.
Zheng-Cheng Zhong Chinghua Hung Hung-Ming Lin Ying-Hui Wang Chang-Hung Huang 《Computer methods in biomechanics and biomedical engineering》2013,16(9):943-953
In a finite element (FE) analysis of the lumbar spine, different preload application methods that are used in biomechanical studies may yield diverging results. To investigate how the biomechanical behaviour of a spinal implant is affected by the method of applying the preload, hybrid-controlled FE analysis was used to evaluate the biomechanical behaviour of the lumbar spine under different preload application methods. The FE models of anterior lumbar interbody fusion (ALIF) and artificial disc replacement (ADR) were tested under three different loading conditions: a 150 N pressure preload (PP) and 150 and 400 N follower loads (FLs). This study analysed the resulting range of motion (ROM), facet contact force (FCF), inlay contact pressure (ICP) and stress distribution of adjacent discs. The FE results indicated that the ROM of both surgical constructs was related to the preload application method and magnitude; differences in the ROM were within 7% for the ALIF model and 32% for the ADR model. Following the application of the FL and after increasing the FL magnitude, the FCF of the ADR model gradually increased, reaching 45% at the implanted level in torsion. The maximum ICP gradually decreased by 34.1% in torsion and 28.4% in lateral bending. This study concluded that the preload magnitude and application method affect the biomechanical behaviour of the lumbar spine. For the ADR, remarkable alteration was observed while increasing the FL magnitude, particularly in the ROM, FCF and ICP. However, for the ALIF, PP and FL methods had no remarkable alteration in terms of ROM and adjacent disc stress. 相似文献
9.
Shaobai Wang Won Man Park Hemanth R. Gadikota Jun Miao Yoon Hyuk Kim Kirkham B. Wood 《Computer methods in biomechanics and biomedical engineering》2013,16(12):1278-1286
Evaluation of the loads on lumbar intervertebral discs (IVD) is critically important since it is closely related to spine biomechanics, pathology and prosthesis design. Non-invasive estimation of the loads in the discs remains a challenge. In this study, we proposed a new technique to estimate in vivo loads in the IVD using a subject-specific finite element (FE) model of the disc and the kinematics of the disc endplates as input boundary conditions. The technique was validated by comparing the forces and moments in the discs calculated from the FE analyses to the in vitro experiment measurements of three corresponding lumbar discs. The results showed that the forces and moments could be estimated within an average error of 20%. Therefore, this technique can be a promising tool for non-invasive estimation of the loads in the discs and may be extended to be used on living subjects. 相似文献
10.
Carmen González-Lluch 《Computer methods in biomechanics and biomedical engineering》2016,19(4):428-439
Many previous studies, both in vitro and with model simulations, have been conducted in an attempt to reach a full understanding of how the different design parameters of an endodontically restored tooth affect its mechanical strength. However, differences in the experimental set-up or modelling conditions and the limited number of parameters studied in each case prevent us from obtaining clear conclusions about the real significance of each parameter. In this work, a new approach is proposed for this purpose based on the combination of a validated three-dimensional parametric biomechanical model of the restored tooth and statistical analysis using full factorial analysis of variance. A two-step approach with two virtual tests (with, respectively, 128 and 81 finite element models) was used in the present work to study the effect of several design parameters on the strength of a restored incisor, using full factorial designs. Within the limitations of this study, and for cases where the parameters are within the ranges that were tested, the conclusions indicate that the material of the post is the most significant factor as far as its strength is concerned, the use of a low Young's modulus being preferable for this component. Once the post material has been chosen, the geometry of the post is of less importance than the Young's modulus selected for the core or, especially, for the crown. 相似文献
11.
P. C. Fernandes J. O. Folgado J. Levy Melancia 《Computer methods in biomechanics and biomedical engineering》2013,16(12):1337-1346
This paper presents a biomechanical analysis of the cervical C5–C6 functional spine unit before and after the anterior cervical discectomy and fusion. The aim of this work is to study the influence of the medical procedure and its instrumentation on range of motion and stress distribution. First, a three-dimensional finite element model of the lower cervical spine is obtained from computed tomography images using a pipeline of image processing, geometric modelling and mesh generation software. Then, a finite element study of parameters' influence on motion and a stress analysis at physiological and different post-operative scenarios were made for the basic movements of the cervical spine. It was confirmed that the results were very sensitive to intervertebral disc properties. The insertion of an anterior cervical plate influenced the stress distribution at the vertebral level as well as in the bone graft. Additionally, stress values in the graft decreased when it is used together with a cage. 相似文献
12.
Benedikt Schlager Frank Niemeyer Fabio Galbusera David Volkheimer René Jonas 《Computer methods in biomechanics and biomedical engineering》2013,16(12):673-683
AbstractThe kinematics of a spinal motion segment is determined by the material properties of the soft-tissue and the morphology. The material properties can vary within subjects and between vertebral levels, leading to a wide possible range of motion of a spinal segment independently on its morphology. The goal of this numerical study was to identify the most influential material parameters concerning the kinematics of a spinal motion segment and their plausible ranges. Then, a method was tested to deduce the material properties automatically, based on a given ROM and morphology. A fully parametric finite element model of the morphology and material properties of a lumbar spinal motion segment was developed. The impact of uncertainty of twelve spinal material parameters, as well as the size of the gap between the articular surfaces of the facet joints was examined. The simulation results were compared to our own in vitro data. The flexibility of a lumbar segment was especially influenced by the properties of the anterior annulus region, the facet gap size and the interspinous ligament. The high degree of uncertainty in the material properties and facet gap size published in the literature can lead to a wide scatter in the motion of a spinal segment, with a range of 6°-17° in the intact condition in flexion/extension, from 5°-22° in lateral bending and from 3°-14° in axial rotation. Statistical analysis of the variability might help to estimate the sensitivity and total uncertainty propagated through biomechanical simulations, affecting the reliability of the predictions. 相似文献
13.
14.
Yong-Hyun Lim 《Computer methods in biomechanics and biomedical engineering》2017,20(6):653-662
Due to the recent increase in the number of stent insertion procedures, the number of studies to evaluate the mechanical behaviors of stents, such as the stress and deformation states, using finite element analysis is also increasing. However, it is still not easy to design stents that are uniformly expanded and show enough radial strength and flexibility. Therefore, in this study, the Taguchi method and finite element analysis were used to determine a set of optimal design variables for unit patterns of stents, and a new design approach was developed to realize uniform expansion, enough radial strength and good flexibility. The stent designed using the new design approach was verified by experiments. 相似文献
15.
《Electromagnetic biology and medicine》2013,32(3):373-381
In this article, new interstitial antenna operating at a frequency of 2.45 GHz for the treatment of hepatocellular carcinoma (HCC) using microwave ablation has been investigated. This antenna is basically an asymmetrical miniaturized choke dipole antenna with a pointed needle at the tip. A commercial finite element method (FEM) package, COMSOL Multiphysics 3.4a, has been used to simulate the performance of needle tip choke antenna. The performance of the antenna has been evaluated numerically, taking into account the specific absorption rate, antenna impedance matching and geometry of the obtained thermal lesion, and the temperature distribution plot obtained shows that maximum temperature was attained in this simulation. The antenna is also capable of creating a spherical-shaped ablation zone. The size and shape of the ablation zone can be slightly adjusted by adjusting the choke position in order to maintain spherical ablation zones. 相似文献
16.
17.
Mayssam Saeed Orna Sharabani-Yosef Amit Gefen 《Computer methods in biomechanics and biomedical engineering》2016,19(13):1359-1362
We present three-dimensional (3D) finite element (FE) models of single, mesenchymal stem cells (MSCs), generated from images obtained by optical phase-contrast microscopy and used to quantify the structural responses of the studied cells to externally applied mechanical loads. Mechanical loading has been shown to affect cell morphology and structure, phenotype, motility and other biological functions. Cells experience mechanical loads naturally, yet under prolonged or sizable loading, damage and cell death may occur, which motivates research regarding the structural behavior of loaded cells. For example, near the weight-bearing boney prominences of the buttocks of immobile persons, tissues may become highly loaded, eventually leading to massive cell death that manifests as pressure ulcers. Cell-specific computational models have previously been developed by our group, allowing simulations of cell deformations under compressive or stretching loads. These models were obtained by reconstructing specific cell structures from series of 2D fluorescence, confocal image-slices, requiring cell-specific fluorescent-staining protocols and costly (confocal) microscopy equipment. Alternative modeling approaches represent cells simply as half-spheres or half-ellipsoids (i.e. idealized geometries), which neglects the curvature details of the cell surfaces associated with changes in concentrations of strains and stresses. Thus, we introduce here for the first time an optical image-based FE modeling, where loads are simulated on reconstructed 3D geometrical cell models from a single 2D, phase-contrast image. Our novel modeling method eliminates the need for confocal imaging and fluorescent staining preparations (both expensive), and makes cell-specific FE modeling affordable and accessible to the biomechanics community. We demonstrate the utility of this cost-effective modeling method by performing simulations of compression of MSCs embedded in a gel. 相似文献
18.
Wroe S Clausen P McHenry C Moreno K Cunningham E 《Proceedings. Biological sciences / The Royal Society》2007,274(1627):2819-2828
The extinct marsupial thylacine (Thylacinus cynocephalus) and placental grey wolf (Canis lupus) are commonly presented as an iconic example of convergence. However, various analyses suggest distinctly different behaviours and specialization towards either relatively small or large prey in the thylacine, bringing the degree of apparent convergence into question. Here we apply a powerful engineering tool, three-dimensional finite element analysis incorporating multiple material properties for bone, to examine mechanical similarity and niche overlap in the thylacine and the wolf subspecies implicated in its extinction from mainland Australia, Canis lupus dingo. Comparisons of stress distributions not only reveal considerable similarity, but also informative differences. The thylacine's mandible performs relatively poorly where only the actions of the jaw muscles are considered, although this must be considered in the light of relatively high bite forces. Stresses are high in the posterior of the thylacine's cranium under loads that simulate struggling prey. We conclude that relative prey size may have been comparable where both species acted as solitary predators, but that the dingo is better adapted to withstand the high extrinsic loads likely to accompany social hunting of relatively large prey. It is probable that there was considerable ecological overlap. As a large mammalian hypercarnivore adapted to taking small-medium sized prey, the thylacine may have been particularly vulnerable to disturbance. 相似文献
19.
Juan Henao Hubert Labelle Pierre-Jean Arnoux 《Computer methods in biomechanics and biomedical engineering》2016,19(8):901-910
Scoliosis is a 3D deformation of the spine and rib cage. For severe cases, surgery with spine instrumentation is required to restore a balanced spine curvature. This surgical procedure may represent a neurological risk for the patient, especially during corrective maneuvers. This study aimed to computationally simulate the surgical instrumentation maneuvers on a patient-specific biomechanical model of the spine and spinal cord to assess and predict potential damage to the spinal cord and spinal nerves. A detailed finite element model (FEM) of the spine and spinal cord of a healthy subject was used as reference geometry. The FEM was personalized to the geometry of the patient using a 3D biplanar radiographic reconstruction technique and 3D dual kriging. Step by step surgical instrumentation maneuvers were simulated in order to assess the neurological risk associated to each maneuver. The surgical simulation methodology implemented was divided into two parts. First, a global multi-body simulation was used to extract the 3D displacement of six vertebral landmarks, which were then introduced as boundary conditions into the personalized FEM in order to reproduce the surgical procedure. The results of the FEM simulation for two cases were compared to published values on spinal cord neurological functional threshold. The efficiency of the reported method was checked considering one patient with neurological complications detected during surgery and one control patient. This comparison study showed that the patient-specific hybrid model reproduced successfully the biomechanics of neurological injury during scoliosis correction maneuvers. 相似文献
20.
Wei Wang Yuyang Pei Zhenpeng Shi Chao Kong Xueqing Wu 《Computer methods in biomechanics and biomedical engineering》2013,16(13):1083-1092
AbstractPosterior pedicle fixation technique is a common method for treating thoracolumbar burst fractures, but the effect of different fixation techniques on the postoperative spinal mechanical properties has not been clearly defined, especially on adjacent segments. A finite element model of T10-L2 with moderate T12 vertebra burst fracture was constructed to investigate biomechanical behavior of three posterior pedicle screw fixation techniques. Compared with traditional short-segment 4 pedicle screw fixation (TS-4) and intermediate long-segment 6 pedicle screw fixation (IL-6), mono-segment 4 pedicle screw fixation (MS-4) provides a safer surgical selection to prevent the secondary degeneration of adjacent segments in the long-term. 相似文献