首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A parametric study to investigate the compressive and the shear stress distributions for various edge shapes created during penetrating keratoplasty (PK) using femtosecond laser is reported. The finite element analysis has been implemented using ABAQUS to study the cornea with various edge shapes, namely the standard edge shape, the zigzag edge shape, the top hat edge shape and the mushroom edge shape for PK. The ratio of maximum compressive stress to maximum shear stress is used as the main factor to assess the relative merits of wound healing rate for different edge shapes. For the typical values of tissue mechanical properties, the zigzag edge shape has the highest ratio of maximum compressive stress to maximum shear stress (11.1 in the xy-direction and 3.7 in the yz-direction), followed by the mushroom edge shape (7.7 in the xy-direction and 3.2 in the yz-direction). The ratios for the top hat and the standard edge shapes are even lower in both directions. A sensitivity analysis of the model has been done to demonstrate that the zigzag edge shape always results in the highest ratios of stresses regardless of the difference in the tissue mechanical properties. The zigzag edge shape also gives the lowest dioptric power D?=?45.4. The present results imply that the zigzag edge shape provides the best wound healing rate and optical outcome among the four edge shapes models for PK.  相似文献   

2.
This study investigates the effects of shear stress on photosynthesis in dilute suspensions of Spirulina platensis and Chlorella by measuring the oxygen production rate using a coaxial, double-rotating-cylinder apparatus that generates Couette shear flow. Our device enables up to 0.6 Pa shear stress to be applied, which has the hydrodynamic effect of generating the algal motion and acutely augmenting the oxygen production rate of Spirulina, primarily because the surface area of algae exposed to illumination is increased. However, there is shear-flow limitation on any increase in oxygen production, and the shear stress at maximum oxygen production rate tends to decrease with increasing temperature. The comparative study with Chlorella showed the reverse relationship between oxygen production and shear stress, and the cause of this difference is discussed in terms of several factors such as size, shape, hydrodynamic stress capacity and others.  相似文献   

3.
Lin X  Helmke BP 《Biophysical journal》2008,95(6):3066-3078
Vascular endothelial cell migration is critical in many physiological processes including wound healing and stent endothelialization. To determine how preexisting cell morphology influences cell migration under fluid shear stress, endothelial cells were preset in an elongated morphology on micropatterned substrates, and unidirectional shear stress was applied either parallel or perpendicular to the cell elongation axis. On micropatterned 20-μm lines, cells exhibited an elongated morphology with stress fibers and focal adhesion sites aligned parallel to the lines. On 115-μm lines, cell morphology varied as a function of distance from the line edge. Unidirectional shear stress caused unpatterned cells in a confluent monolayer to exhibit triphasic mechanotaxis behavior. During the first 3 h, cell migration speed increased in a direction antiparallel to the shear stress direction. Migration speed then slowed and direction became spatially heterogeneous. Starting 11-12 h after the onset of shear stress, the unpatterned cells migrated primarily in the downstream direction, and migration speed increased significantly. In contrast, mechanotaxis was suppressed after the onset of shear stress in cells on micropatterned lines during the same time period, for the cases of both parallel and perpendicular flow. The directional persistence time was much longer for cells on the micropatterned lines, and it decreased significantly after flow onset. Migration trajectories were highly correlated among micropatterned cells within a three-cell neighborhood, and shear stress disrupted this spatially correlated migration behavior. Thus, presetting structural morphology may interfere with mechanisms of sensing local physical cues, which are critical for establishing mechanotaxis in response to hemodynamic shear stress.  相似文献   

4.
Production of a liquid inoculum/spawn of Agaricus bisporus   总被引:2,自引:0,他引:2  
The production of a homogeneous liquid culture of mushroom mycelium with a high density of viable inoculum points is a prerequisite for the adaptation of the liquid culture technology to the mushroom spawn production process. Homogenisation proved unsuitable as a technique to produce a morphology of this nature because of the shear sensitive nature of Agaricus bisporus. To overcome this limitation, a homogeneous culture was produced by exposing culture flasks to alternating periods of shear stress (300 rpm on a shaker table for 60 min day-1) and recovery (23 h day-1 under static conditions).  相似文献   

5.
In this work, molecular dynamics simulations were performed to investigate the gas diffusion mechanism in catenated metal–organic frameworks (MOFs), for which methane was adopted as a probe and two catenated IRMOFs with interwoven structure, IRMOF-11 and IRMOF-13, were considered. This work reveals that the diffusion pathways of methane molecules in catenated MOFs are mainly governed by the strong confinement in catenation regions, leading to a 3D diffusion along the sheets formed by the A-regions (xy-direction) as well as from one A-region to another by crossing a B-region (z-direction). In addition, the present work shows that the effect of catenation on methane diffusivity is very large, much larger than that on hydrogen diffusivity at room temperature, and that both adsorption selectivity and dynamic selectivity of gas mixtures may be enhanced largely in catenated MOFs, indicating that catenation is a good strategy to improve the overall performance of a material as a membrane in separation applications.  相似文献   

6.
Laminar shear stress (LSS) due to blood flow contributes to the maintenance of endothelial health by multiple mechanisms including promotion of wound healing. The present study examined the hypothesis that the induction of water channel aquaporin 1 (AQP1) expression by LSS might be functionally associated with endothelial wound healing. When human umbilical vein endothelial cells were exposed to LSS at 12 dyn cm?2 for 24 h, significant increases in AQP1 expression were observed at the mRNA and protein levels as compared with static control. In the in vitro scratch wound healing assay, LSS treatments before and after wound creation enhanced endothelial wound healing and this effect was significantly attenuated by selective suppression of AQP1 expression using small interfering RNA. Ectopic expression of AQP1 enhanced wound healing in the absence of LSS. This study demonstrated that LSS stimulates the endothelial expression of AQP1 that plays a role in wound healing.  相似文献   

7.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

8.
A setQ(n) of noncongruent connected shapes, constructed from a fixed numbern of congruent regular hexagons laid edge to edge, is defined. Various measures of shape are applied toQ(n) and the results are numerically analyzed in the special casesn≦9. The concept of spatial entropy is introduced which affords a measure of the “complexity” of shape. Possible biological applications include the analysis of ecological cover,stigmergy or the complex nest-building activities of social insects and morphogenesis. Essentially any comparative study of shape, regardless of the specific application, might be carried out along the lines suggested in the paper.  相似文献   

9.
Following our established theoretical model to deal with the second-harmonic generation (SHG) excited by a linearly polarized focused beam in type I collagen, in this paper, we further quantitatively characterize the differences between SHG emissions in type I collagen excited by collimated and focused beams. The effects of the linear polarization angle (α) and the fibril polarity characterized by the hyperpolarizability ratio ρ on SHG emission has been compared under collimated and focused beam excitation, respectively. In particular, SHG emission components along the i axis ( I2w,i )\left( {I_{2\omega {,}i} } \right) (i = x,y,z), the induced SHG emission deviation angle γ ij , and the detected SHG signals (I 2ω,ij ) in the ij plane by rotating the applied polarizer angle φ ij have been investigated (i = x, x, y; j = y, z, z). Results show that under our simulation model, SHG emission in the xy plane, such as I 2ω,x ,I 2ω,y ,γ xy and I 2ω,xy varying as polarization angle (α) under collimated and focused light, presents no significant difference. The reverse of the fibril polarity has induced great impact on I 2ω,x ,γ xy and I 2ω,xy in both collimated and focused light. I 2ω,x and γ xy show similarity, but I 2ω,xy at α = 30° demonstrates a slight difference in focused light to that in collimated light. Under focused light, the reverse of fibril polarity causes obvious changes of the collected SHG intensity I 2ω,xz and I 2ω,yz at a special polarization angle α = 60° and γ xz , γ yz along α.  相似文献   

10.
The reasons that cause delay in wound healing in diabetes are a decrease in the level of growth factors secretion, an increase in the destruction of growth factors and in oxidative stress. Platelet derived growth factor (PDGF) is one of the important growth factors that play a role in all phases of wound healing. This study investigates time-dependent effects of topically PDGF-BB administration on oxidative events on the healing of dorsolateral-excisional wounds in diabetic rats. Forty-two female Wistar-albino rats with streptozotocin-induced diabetes were divided into four groups: control group, untreated group, chitosan-treated group, chitosan?+?PDGF-BB-treated group. Two identical full-thickness excisional skin wounds were made under anaesthesia in all rats except for the control group. In the PDGF-BB-treated and chitosan-treated groups, the wounds were treated topically PDGF-BB (7?ng/mL, single daily dose) and blank chitosan gel (equal amount) after wounding, respectively. After these administrations, on day 3 and day 7 of wound healing, rats were sacrificed. Thiobarbituric acid reactive substances, glutathione, nitric oxide, ascorbic acid levels, and superoxide dismutase activity in wound tissues were spectrophotometrically measured. PDGF-BB administration significantly increased TBARS levels and non-enzymatic antioxidant levels in early phase of diabetic wound healing. PDGF-BB dramatically reduced NOx levels on day 3 and sharply increased NOx levels on day 7 of wound healing. Consequently, PDGF-BB administration can be effective on oxidative balance in the early phase of diabetic wound healing.  相似文献   

11.
Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC (BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either "high" (19 dyn/cm(2)) or "low" (3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.  相似文献   

12.
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form “signaling centers” along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.  相似文献   

13.
Pressure ulcers are characterized by chronicity, which results in delayed wound healing due to pressure. Early intervention for preventing delayed healing due to pressure requires a prediction method. However, no study has reported the prediction of delayed healing due to pressure. Therefore, this study focused on biological response-based molecular markers for the establishment of an assessment technology to predict delayed healing due to pressure. We tested the hypothesis that sustained compressive loading applied to three dimensional cultured fibroblasts leads to upregulation of heat shock proteins (HSPs), CD44, hyaluronan synthase 2 (HAS2), and cyclooxygenase 2 (COX2) along with apoptosis via disruption of adhesion. First, sustained compressive loading was applied to fibroblast-seeded collagen sponges. Following this, collagen sponge samples and culture supernatants were collected for apoptosis and proliferation assays, gene expression analysis, immunocytochemistry, and quantification of secreted substances induced by upregulation of mRNA and protein level. Compared to the control, the compressed samples demonstrated that apoptosis was induced in a time- and load- dependent manner; vinculin and stress fiber were scarce; HSP90α, CD44, HAS2, and COX2 expression was upregulated; and the concentrations of HSP90α, hyaluronan (HA), and prostaglandin E2 (PGE2) were increased. In addition, the gene expression of antiapoptotic Bcl2 was significantly increased in the compressed samples compared to the control. These results suggest that compressive loading induces not only apoptosis but also survival activity. These observations support that HSP90α, HA, and, PGE2 could be potential molecular markers for prediction of delayed wound healing due to pressure.  相似文献   

14.
Summary Wounded amphibian skin heals initially by a migration of epithelial cells from the cut edge towards the center of the wound. The density of currents leaving wounds made in Notophthalmus viridescens skin was manipulated in order to determine whether electrical fields associated with these currents might have a significant role in promoting this cell migration during wound healing. Wounds were made with either a needle (200 m) or a biopsy punch (500 m). Currents leaving the wounds were measured with a vibrating probe, and the wounds fixed at various times after wounding. When the Na+-dependent currents were reduced by blocking Na+ channels with benzamil, wound healing, as revealed by scanning electron microscopy and by paraffin histology, was impaired. These results are consistent with the hypothesis that there is an electrical component to wound healing.  相似文献   

15.
16.
Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo‐membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub‐cellular membranes, as shown by its suppression of experimentally induced laminopathy‐like nuclear defects. Our findings reveal a function for TORC1‐mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.  相似文献   

17.
In the north of China, wheat plants are often stressed by heat and high light during grain-filling stage, which leads to injury in photosynthetic apparatus and decline in photosynthetic rate. In order to develop a method to protect photosynthetic apparatus in wheat leaves subjected to heat and high light stress, the effects of SA (salicylic acid) and FSBA (5′-p-fluorosulfonylbenzoyl adenosine) on PK (protein kinase) activity, D1 protein degradation and the performance of PSII were investigated in present work. Our results showed that PK activity enhanced under heat and high light stress and declined when stress was removed. FSBA pretreatment resulted in marked decreases in PK activity and D1 protein level, suggesting a correlationship between degradation of D1 protein and phosphorylation. After 2 h of stress, D1 protein level in water-pretreated leaves decreased to 79% of control and then recovered to 81% after 3 h of recovery. This clearly indicated that the damage of D1 protein induced by heat and high light stress was reversible. Compared to the control, SA pretreatment could not only increase PK activity, retard the degradation of D1 protein during heat and high light stress, but also accelerate the recovery of D1 protein level when the stress was removed. Correspondingly, Fv/Fm (maximum photochemical efficiency of PSII), ΦPSII (actual photochemical efficiency of PSII), ETR (electron transfer rate) and Pn (net photosynthetic rate) in SA-treated leaves were higher than that in leaves of control under both stress and non-stress conditions. Taken together, our results revealed that SA pretreatment could significantly alleviate damages of heat and high light stress on D1 protein and PSII of wheat leaves, and accelerate restoration of photosynthetic function.  相似文献   

18.
Laurocerasus officinalis Roem. (syn: Prunus laurocerasus L.) is a member of Rosaceae family. We investigated the antimicrobial and antioxidant activity of L. officinalis Roem in wound healing both in vivo and in vitro using an excisional wound model model in mice. We used four groups of eight mice as follows: untreated (control), empty gel, extract + gel (L. officinalis + gel), and Madecassol® groups. All treatments were applied topically once daily. The scar area, percentage wound closure and epithelization time were measured. L. officinalis promoted wound healing and increased granulation tissue, epidermal regeneration and angiogenesis. L. officinalis extract, which is known for its antioxidant and antimicrobial activities, may be useful for promoting wound healing.  相似文献   

19.
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.  相似文献   

20.
Hydrogel dressings have significant advantages such as absorption of tissue exudate, maintenance of proper moist environment, and promotion of cell proliferation. However, facile preparation method and high-efficient antibacterial hydrogel dressings are still a great challenge. In this study, a facile approach to prepare antibacterial nanocomposite hydrogel dressing to accelerate healing was explored. The hydrogels consisted of quaternized chitosan and chemically cross-linked polyacrylamide, as well as silver nanoparticles (AgNPs) stabilized by chitosan. The synthesis of the hydrogels including the formation of AgNPs and polymerization of acrylamide was accomplished simultaneously under UV irradiation in 1 hour without adding initiator. The hydrogels showed favorable tensile strength of ∼100 kPa with elongation at break over 1000% and shear modulus of ∼104 Pa as well as suitable swelling ratio, which were appropriate for wound dressing. The combination of quaternized chitosan and AgNPs exhibited high-efficient and synergetic antibacterial performance with low cytotoxicity. In vivo animal experiments showed that the hydrogel can effectively prevent wound infection and promote wound healing. This study provides a facile method to produce antibacterial hydrogel wound dressing materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号