首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodynamics and injury potential of operators in stand-up rider lift truck accidents have been investigated with a special focus on head injury. An anthropomorphic test device (ATD) model was used as an operator surrogate in computer simulations of off-the-dock (OTD) and tip-over (TO) accidents. The biomechanical model representing the ATD was developed based on rigid body segments, and then combined with a rigid body truck model in the accident simulations. The operator compartment of the truck model was enclosed with a rear door. The computed kinematics are in agreement with the results of previous experimental testing. A 2D finite element model of the head was created to compute head impact decelerations in the sagittal plane. Values of the head injury criterion for the TO cases were computed from the model and shown to compare favourably with experimental values. The results advance the state of knowledge concerning injury potential in TO and OTD accidents and simulation models for such accidents.  相似文献   

2.
Traumatic spinal cord injury (TSCI) is a condition with suffering of neural structures from acute trauma with short-term or permanent sensory and motor problems. This study was conducted with the aim of determining the prevalence of TSCI in Tehran with emphasis on demographic characteristics of patients and to evaluate the effect of computed tomography (CT) in determining fracture type and severity grade of injury among TSCI patients. In a cross-sectional study, all TSCI and spinal fracture patients (N = 520) who referred to the main trauma center in Tehran, Iran, in 2013 and 2014 were selected. Radiography and CT scan were prepared and reported blindedly by two radiologists. Majority of the patients was 21–30 years male, married and their most common occupation was car driver. A significant difference was observed between gender and etiology (P = 0.001). The main etiology was traffic accident followed by falling from height. While the most common location of injury for males was thoracic vertebrae followed by lumbar vertebrae; for females it was lumbar followed by thoracic. Majority of patients had ASIA (American Spinal Injury Association) impairment scale of E (normal), followed by B (sensory incomplete). Most of the cases were hospitalized less than one week. Age of the patient and duration of hospitalization had a significant association (P = 0.015). The results showed that in traumatic spinal cord events, traffic accident and falling from height are the main etiologies; hence, authorities in Iranian health system could consider preventive policies to decline the load and TSCI effects in hospitals and population.  相似文献   

3.
One major concern regarding soft tissue allograft use in surgical procedures is the risk of disease transmission. Current techniques of tissue sterilization, such as irradiation have been shown to adversely affect the mechanical properties of soft tissues. Grafts processed using Biocleanse processing (a proprietary technique developed by Regeneration Technologies to sterilize human tissues) will have better biomechanical characteristics than tissues that have been irradiated. Fifteen pairs of cadaveric Achilles tendon allografts were obtained and separated into three groups of 10 each. Three treatment groups were: Biocleanse, Irradiated, and Control (untreated). Each specimen was tested to determine the biomechanical properties of the tissue. Specimens were cyclically preloaded and then loaded to failure in tension. During testing, load, displacement, and optical strain data were captured. Following testing, the cross sectional area of the tendons was determined. Tendons in the control group were found to have a higher extrinsic stiffness (slope of the load–deformation curve, p = .005), have a higher ultimate stress (force/cross sectional area, p = .006) and higher ultimate failure load (p = .003) than irradiated grafts. Biocleanse grafts were also found to be stiffer than irradiated grafts (p = .014) yet were not found to be statistically different from either irradiated or non-irradiated grafts in terms of load to failure. Biocleanse processing seems to be a viable alternative to irradiation for Achilles tendon allografts sterilization in terms of their biomechanical properties.  相似文献   

4.
Biodynamics and injury potential of operators in stand-up rider lift truck accidents have been investigated with a special focus on head injury. An anthropomorphic test device (ATD) model was used as an operator surrogate in computer simulations of off-the-dock (OTD) and tip-over (TO) accidents. The biomechanical model representing the ATD was developed based on rigid body segments, and then combined with a rigid body truck model in the accident simulations. The operator compartment of the truck model was enclosed with a rear door. The computed kinematics are in agreement with the results of previous experimental testing. A 2D finite element model of the head was created to compute head impact decelerations in the sagittal plane. Values of the head injury criterion for the TO cases were computed from the model and shown to compare favourably with experimental values. The results advance the state of knowledge concerning injury potential in TO and OTD accidents and simulation models for such accidents.  相似文献   

5.
To investigate the contamination level, distribution, possible source, and human exposure risk of polycyclic aromatic hydrocarbons (PAHs) in the urban traffic environment, 15 PAHs were measured in 34 road dust samples (particle size < 25 μm) collected from three grades of roads and park paths in Xinxiang, China. ΣPAHs concentrations ranged from 311 to 21200 ng g?1, with a mean of 5890 ng g?1 and decreased in the following order: main roads (7650 ng g?1) > collector streets (7410 ng g?1) > bypasses (2970 ng g?1) > park paths (1570 ng g?1), indicating that significant positive correlation existed between PAH contamination and traffic density. PAHs in all samples were dominantly composed of 4-ring PAHs, accounting for 44.8% of the total. Pyrene, fluoranthene, and chrysene were the predominant individual components and accounted for 14.7% (1.2–19.2%), 12.9% (3.3–20.3%), and 11.0% (2.5–18.6%) of ΣPAHs, respectively. The specific isomer ratios indicated that traffic emission was the dominant source of PAHs in road dust. The incremental lifetime cancer risk values showed that cancer risk from exposure to road dust–borne PAHs was acceptable for local residents in Xinxiang.  相似文献   

6.
In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.  相似文献   

7.
The study measured the concentration of Cd, Cr, Pb, Cu, and Zn in various fish tissues (muscle, gills, and liver) of 18 fish species (C. gachua, C. marulius, C. punctatus, C. nama, C. ranga, H. fossilis, C. batrachus, P. ticto, P. phutunio, L. rohita, L. calbasu, L. gonius, T. putitora, T. tor, R. rita, G. chapra, H. ilisa, and N. botia) collected from Ganga river. It is the survey regarding metal concentration in fish tissues increasing day by day. The metal concentration in different fish tissues varied on the following range: Cu (0.45–8.54 µg/g wet wt), Zn (0.07–2.2 µg/g wet wt), Pb (0.20–2.62 µg/g wet wt), Cd (0.07–2.32 µg/g wet wt), and Cr (0.09–1.74 µg/g wet wt). The results show the concentration of Pb, Cd, and Cr metals to be higher than internationally recommended standard limits (as determined by the WHO and FAO) and other similar studies. Generally, higher concentrations of metals were found in liver and gills than muscles. Despite lower estimated daily intake (EDI) of fish in the area (per recommended daily allowance guidelines), values of daily average consumption were lower than the recommended values by FAO/WHO/EFSA, and in fish samples these were below the provisional permissible levels for human consumption. The continuous exposure to heavy metals has been linked to the development of mental retardation, kidney damage, various cancers, and even death in instances of very high exposure in human body.  相似文献   

8.
Abusive head trauma (AHT) is a potentially fatal result of child abuse, but the mechanisms by which injury occur are often unclear. To investigate the contention that shaking alone can elicit the injuries observed, effective computational models are necessary. The aim of this study was to develop a probabilistic model describing infant head kinematics in AHT. A deterministic model incorporating an infant’s mechanical properties, subjected to different shaking motions, was developed in OpenSim. A Monte Carlo analysis was used to simulate the range of infant kinematics produced as a result of varying both the mechanical properties and the type of shaking motions. By excluding physically unrealistic shaking motions, worst-case shaking scenarios were simulated and compared to existing injury criteria for a newborn, a 4.5 month-old, and a 12 month-old infant. In none of the three cases were head kinematics observed to exceed previously-estimated subdural haemorrhage injury thresholds. The results of this study provide no biomechanical evidence to demonstrate how shaking by a human alone can cause the injuries observed in AHT, suggesting either that additional factors, such as impact, are required, or that the current estimates of injury thresholds are incorrect.  相似文献   

9.
The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.  相似文献   

10.
Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357–366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33–38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151–160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.  相似文献   

11.
The human health risk of fluoride from the consumption of four commercial bivalve species collected from contaminated sites along the Egyptian Sea coasts was assessed. The fluoride concentration in soft and shell tissues of fresh bivalve species (Callista florida, Paphia textile, Donax vittatus and Anadara diluvii) was determined. The predicted human health risk of fluoride from the consumption of the samples was studied by applying the calculations of estimated daily intake and hazard quotient for toddlers' (1.84–3.99 mg/kg/day and 15.1–32.7, respectively) and adults' (1.22–2.64 mg/kg/day and 10.0–21.7, respectively) ingestion. The fluoride contents in soft and shell tissues of bivalve samples along all the sampling locations were 0.38–0.64 and 0.56–0.69 mg/g with averages 0.50 ± 0.10 and 0.62 ± 0.05 mg/g, respectively. ANOVA and multiple regression analyses reflected that the accumulation of fluoride in bivalve species was influenced by the dimensions and weight of the bivalve species. The average calculated estimation of the daily intake of fluoride for toddlers and adults ingesting the bivalve species exceeded the lowest-observed-adverse-effect level of skeletal effects' value (LOAEL; 0.25 mg fluoride/kg/day). The evaluated hazard quotient values also pointed to the human health hazards that may be caused by bivalve consumption.  相似文献   

12.
While the majority of human spinal cord injuries occur in the cervical spinal cord, the vast majority of laboratory research employs animal models of spinal cord injury (SCI) in which the thoracic spinal cord is injured. Additionally, because most human cord injuries occur as the result of blunt, non-penetrating trauma (e.g. motor vehicle accident, sporting injury) where the spinal cord is violently struck by displaced bone or soft tissues, the majority of SCI researchers are of the opinion that the most clinically relevant injury models are those in which the spinal cord is rapidly contused.1 Therefore, an important step in the preclinical evaluation of novel treatments on their way to human translation is an assessment of their efficacy in a model of contusion SCI within the cervical spinal cord. Here, we describe the technical aspects and resultant anatomical and behavioral outcomes of an unilateral contusive model of cervical SCI that employs the Infinite Horizon spinal cord injury impactor.Sprague Dawley rats underwent a left-sided unilateral laminectomy at C5. To optimize the reproducibility of the biomechanical, functional, and histological outcomes of the injury model, we contused the spinal cords using an impact force of 150 kdyn, an impact trajectory of 22.5° (animals rotated at 22.5°), and an impact location off of midline of 1.4 mm. Functional recovery was assessed using the cylinder rearing test, horizontal ladder test, grooming test and modified Montoya''s staircase test for up to 6 weeks, after which the spinal cords were evaluated histologically for white and grey matter sparing.The injury model presented here imparts consistent and reproducible biomechanical forces to the spinal cord, an important feature of any experimental SCI model. This results in discrete histological damage to the lateral half of the spinal cord which is largely contained to the ipsilateral side of injury. The injury is well tolerated by the animals, but does result in functional deficits of the forelimb that are significant and sustained in the weeks following injury. The cervical unilateral injury model presented here may be a resource to researchers who wish to evaluate potentially promising therapies prior to human translation.  相似文献   

13.
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.  相似文献   

14.
This study aimed to develop and validate a finite element (FE) model of a human clavicle which can predict the structural response and bone fractures under both axial compression and anterior–posterior three-point bending loads. Quasi-static non-injurious axial compression and three-point bending tests were first conducted on a male clavicle followed by a dynamic three-point bending test to fracture. Then, two types of FE models of the clavicle were developed using bone material properties which were set to vary with the computed tomography image density of the bone. A volumetric solid FE model comprised solely of hexahedral elements was first developed. A solid-shell FE model was then created which modelled the trabecular bone as hexahedral elements and the cortical bone as quadrilateral shell elements. Finally, simulations were carried out using these models to evaluate the influence of variations in cortical thickness, mesh density, bone material properties and modelling approach on the biomechanical responses of the clavicle, compared with experimental data. The FE results indicate that the inclusion of density-based bone material properties can provide a more accurate reproduction of the force–displacement response and bone fracture timing than a model with uniform bone material properties. Inclusion of a variable cortical thickness distribution also slightly improves the ability of the model to predict the experimental response. The methods developed in this study will be useful for creating subject-specific FE models to better understand the biomechanics and injury mechanism of the clavicle.  相似文献   

15.
The development and safety certification of less lethal projectiles require an understanding of the influence of projectile parameters on projectile–chest interaction and on the resulting terminal effect. Several energy-based criteria have been developed for chest injury assessment. Many studies consider kinetic energy (KE) or energy density as the only projectile parameter influencing terminal effect. In a common KE range (100–160 J), analysis of the firing tests of two 40 mm projectiles of different masses on animal surrogates has been made in order to investigate the severity of the injuries in the thoracic region. Experimental results have shown that KE and calibre are not sufficient to discriminate between the two projectiles as regards their injury potential. Parameters, such as momentum, shape and impedance, influence the projectile–chest interaction and terminal effect. A simplified finite element model of projectile–structure interaction confirms the experimental tendencies. Within the range of ballistic parameters used, it has been demonstrated that maximum thoracic deflection is a useful parameter to predict the skeletal level of injury, and it largely depends on the projectile pre-impact momentum. However, numerical simulations show that these results are merely valid for the experimental conditions used and cannot be generalised. Nevertheless, the transmitted impulse seems to be a more general factor governing the thorax deflection.  相似文献   

16.
We aimed to verify a custom virtual fields method (VFM) to estimate the patient-specific biomechanical properties of human optic nerve head (ONH) tissues, given their full-field deformations induced by intraocular pressure (IOP). To verify the accuracy of VFM, we first generated ‘artificial’ ONH displacements from predetermined (known) ONH tissue biomechanical properties using finite element analysis. Using such deformations, if we are able to match back the known biomechanical properties, it would indicate that our VFM technique is accurate. The peripapillary sclera was assumed anisotropic hyperelastic, while all other ONH tissues were considered isotropic. The simulated ONH displacements were fed into the VFM algorithm to extract back the biomechanical properties. The robustness of VFM was also tested against rigid body motions and noise added to the simulated displacements. Then, the computational speed of VFM was compared to that of a gold-standard stiffness measurement method (inverse finite element method or IFEM). Finally, as proof of principle, VFM was applied to IOP-induced ONH deformation data (obtained from one subject’s eye imaged with OCT), and the biomechanical properties of the prelamina and lamina cribrosa (LC) were extracted. From given ONH displacements, VFM successfully matched back the biomechanical properties of ONH tissues with high accuracy and efficiency. For all parameters, the percentage errors were less than 0.05%. Our method was insensitive to rigid body motions and was also able to recover the material parameters in the presence of noise. VFM was also found 125 times faster than the gold-standard IFEM. Finally, the estimated shear modulus for the prelamina and the LC of the studied subject’s eye were 33.7 and 63.5 kPa, respectively. VFM may be capable of measuring the biomechanical properties of ONH tissues with high speed and accuracy. It has potential in identifying patient-specific ONH biomechanical properties in the clinic if combined with optical coherence tomography.  相似文献   

17.
The effects of climate change and human activities on streamflow are of great importance for the water resource management, and these studies have attracted a lot of attention in recent years. In this study, we made an assessment of the annual streamflow record in the Yanhe watershed from 1960 to 2009 and analyzed the response of streamflow to changes in climate and human activities. The results indicated that the annual streamflow exhibited a decreasing trend (it decreased 41.90 mm). The main factor that influenced the annual streamflow was climate change, which can be seen to inform the result of a decrease of 25.27 mm (60.31%). Likewise, human activities caused the streamflow to decrease by 17.04 mm (40.67%). Finally, the mean effect of vegetation on the annual streamflow was approximately 104.84 mm. Moreover, the presence of vegetation had stronger effects on the streamflow in wetter years.  相似文献   

18.
Because of the low amount of nitrogen and organic matter in most soils of Iran, it is recommended to use nitrogen fertilizers in potato fields. Nitrate accumulates in plants naturally and if it enters into the human body it can threaten human health. There is not enough information about nitrate distribution in potatoes in Iran and a scientific value of critical level of nitrate in potatoes in Iran. The objective of this study, then, is to: determine the amount of nitrate in potatoes produced in different parts of Iran, assess the human health risks arising from potatoes nitrate, and calculate the critical concentration of nitrate in potato, using a risk assessment study and Iranian food basket. Two hundred and seventy-seven samples were collected from main provinces producing potatoes in Iran. Concentration of nitrate was measured in all samples. Results showed that Kerman province has more nitrate pollution and non cancer risk arising from nitrate. The most sensitive group to nitrate was boys 7–14 years old residing in Kerman province. Critical value of nitrate in potato for this receptor group, then for Iranian society in conservative conditions, was calculated using intake equations introduced by the USEPA and considering Iranian food basket as 246 mg kg–1.  相似文献   

19.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   

20.
Both computational finite element and experimental models of the human torso have been developed for ballistic impact testing. The human torso finite element model (HTFEM), including the thoracic skeletal structure and organs, was created in the finite element code LS-DYNA. The skeletal structure was assumed to be linear-elastic while all internal organs were modeled as viscoelastic. A physical human surrogate torso model (HSTM) was developed using biosimulant materials and the same anthropometry as the HTFEM. The HSTM response to impact was recorded with piezoresistive pressure sensors molded into the heart, liver and stomach and an accelerometer attached to the sternum. For experimentation, the HSTM was outfitted with National Institute of Justice (NIJ) Level I, IIa, II and IIIa soft armor vests. Twenty-six ballistic tests targeting the HSTM heart and liver were conducted with 22 caliber ammunition at a velocity of 329 m/s and 9 mm ammunition at velocities of 332, 358 and 430 m/s. The HSTM pressure response repeatability was found to vary by less than 10% for similar impact conditions. A comparison of the HSTM and HTFEM response showed similar pressure profiles and less than 35% peak pressure difference for organs near the ballistic impact point. Furthermore, the peak sternum accelerations of the HSTM and HTFEM varied by less than 10% for impacts over the sternum. These models provide comparative tools for determining the thoracic response to ballistic impact and could be used to evaluate soft body armor design and efficacy, determine thoracic injury mechanisms and assist with injury prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号