首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the increasing adoption of immediate implantation strategies and the rapid development of the computer aided design/computer aided manufacturing technology, a therapeutic concept based on patient-specific implant dentistry has recently been reintroduced by many researchers. However, little information is available on the designs of custom-made dental implant systems, especially their biomechanical behavior. The influence of the custom-made implant designs on the biomechanical performance for both an immediate and a delayed loading protocol in the maxillary esthetic zone was evaluated by means of the finite element (FE) method. FE models of three dental implants were considered: a state of the art cylindrical implant and two custom-made implants designed by reverse engineering technology, namely a root-analogue implant and a root-analogue threaded implant. The von Mises stress distributions and micro-motions around the bone-implant interfaces were calculated using ANSYS software. In a comparison of the three implant designs for both loading protocols, a favorable biomechanical performance was observed for the use of root-analogue threaded implant which approximated the geometry of natural anterior tooth and maintained the original long-axis. The results indicated that bone-implant interfacial micro-motion was reduced and a favorable stress distribution after osseointegration was achieved.  相似文献   

2.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

3.
Implant dimensions greatly influence load transfer characteristics and the lifetime of a dental system. Excessive stresses at peri-implant area may result in bone failure. Finding the critical point at the implant–bone interface and evaluating the influence of implant diameter-to-length ratio on adjacent bone stresses makes it possible to select implant dimensions. For this, different cylindrical implants were numerically analysed using geometrical models generated from computed tomography images of mandible with osseointegrated implants. All materials were assumed to be linearly elastic and isotropic. Masticatory load was applied in its natural direction, oblique to occlusal plane. Maximum von Mises stresses were located around the implant neck at the critical point of its intersection with the plane of loading and were functions of implant diameter-to-length ratio. It was demonstrated that there exists a certain spectrum of diameter-to-length ratios, which will keep maximum bone stresses at a preset level chosen in accordance with patient's bone strength.  相似文献   

4.
《Journal of biomechanics》2014,47(16):3830-3836
The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations.  相似文献   

5.
Dental implants may alter the mechanical environment in the jawbone, thereby causing remodelling and adaptation of the surrounding trabecular bone tissues. To improve the efficacy of dental implant systems, it is necessary to consider the effect of bone remodelling on the performance of the prosthetic systems. In this study, finite element simulations were implemented to predict the evolution of microarchitecture around four implant systems using a previously developed model that combines both adaptive and microdamage-based mechano-sensory mechanisms in bone remodelling process. Changes in the trabecular architecture around dental implants were mainly focused. The simulation results indicate that the orientational and ladder-like architecture around the implants predicted herein is in good agreement with those observed in animal experiments and clinical observations. The proposed algorithms were shown to be effective in simulating the remodelling process of trabecular architecture around dental implant systems. In addition, the architectural features around four typical dental implant systems in alveolar bone were evaluated comparatively.  相似文献   

6.
The aims of this study were to examine the effect of implant neck design and cortical bone thickness using 3D finite element analysis and to analyse the stability of clinical evidence based on micromotion and principal stress. Four commercial dental implants for a type IV bone and maxillary segments were created. Various parameters were considered, including the osseointegration condition, loading direction and cortical bone thickness. Micromotion and principal stresses were used to evaluate the failure of osseointegration and bone overloading, respectively. It was found that the maximum stress of the peri-implant bone decreased as cortical bone thickness increased. The micromotion level in full osseointegration is less than that in non-osseointegration and it also decreases as cortical bone thickness increases. The cortical bone thickness should be measured before surgery to help select a proper implant. In the early stage of implantation, the horizontal loading component induces stress concentration in bone around the implant neck more easily than does the vertical loading component, and this may result in crestal bone loss.  相似文献   

7.
This study presents the implementation of a mathematical bone remodeling algorithm to bone adaptation in the premolar area of the mandible around various dental implant systems, and thus sheds a new perspective to the complex interactions in dental implant mechanics. A two-dimensional, plane strain model of the bone was built from a CT-scan. The effect of implant contour on internal bone remodeling was investigated by considering four dental implant systems with contours similar to commercially available ones and another four with cylindrical and conical cross-sections. The remodeling algorithm predicts non-homogeneous density/elastic modulus distribution; and, implant contour has some effect on how this is distributed. Bone density is predicted to increase on the tips of the threads of the implants, but to decrease inside the grooves. Threadless implants favor to develop a softer bone around their periphery, compared to implant systems that have threads. The overall contour (dimensions and the shape) of an implant affect the bone density redistribution, but the differences between different implant systems are relatively small.  相似文献   

8.
The objective of this study was to predict time-dependent bone remodeling around tissue- and bone-level dental implants used in patients with reduced bone width. The remodeling of bone around titanium tissue-level, and titanium and titanium–zirconium alloy bone-level implants was studied under 100 N oblique load for one month by implementing the Stanford theory into three-dimensional finite element models. Maximum principal stress, minimum principal stress, and strain energy density in peri-implant bone and displacement in x- and y- axes of the implant were evaluated. Maximum and minimum principal stresses around tissue-level implant were higher than bone-level implants and both bone-level implants experienced comparable stresses. Total strain energy density in bone around titanium implants slightly decreased during the first two weeks of loading followed by a recovery, and the titanium–zirconium implant showed minor changes in the axial plane. Total strain energy density changes in the loading and contralateral sides were higher in tissue-level implant than other implants in the cortical bone at the horizontal plane. The displacement values of the implants were almost constant over time. Tissue-level implants were associated with higher stresses than bone-level implants. The time-dependent biomechanical outcome of titanium–zirconium alloy bone-level implant was comparable to the titanium implant.  相似文献   

9.
Osseointegration, understood as an intimate apposition and interdigitation of bone to a biomaterial, is usually regarded as a major condition for the long-term clinical success of bone implants. Clearly, the anchorage of an implant to bone tissue critically relies on the formation of new bone between the implant and the surface of the old peri-implant bone and depends on factors such as the surface microtopography, chemical composition and geometry of the implant, the properties of the surrounding bone and the mechanical loading process. The main contribution of this work is the proposal of a new mathematical framework based on a set of reaction-diffusion equations that try to model the main biological interactions occurring at the surface of implants and is able to reproduce most of the above mentioned biological features of the osseointegration phenomenon. This is a two-part paper. In this first part, a brief biological overview is initially given, followed by the presentation and discussion of the model. In addition, two-dimensional finite element simulations of the bone-ingrowth process around a dental implant with two different surface properties are included to assess the validity of the model. Numerical solutions show the ability of the model to reproduce features such as contact/distance osteogenesis depending upon the specific surface microtopography. In Part 2 [Moreo, P., García-Aznar, J.M., Doblaré, M., 2008. Bone ingrowth on the surface of endosseous implants. Part 2: influence of mechanical stimulation, type of bone and geometry. J. Theor. Biol., submitted for publication], two simplified versions of the whole model are proposed. An analytical study of the stability of fixed points as well as the existence of travelling wave-type solutions has been done with both simplified models, providing a significant insight into the behaviour of the model and giving clues to interpret the effectiveness of recently proposed clinical therapies. Furthermore, we also show that, although the mechanical state of the tissue is not directly taken into account in the model equations, it is possible to analyse in detail the effect that mechanical stimulation would have on the predictions of the model. Finally, numerical simulations are also included in the second part of the paper, with the aim of looking into the influence of implant geometry on the osseointegration process.  相似文献   

10.
Resurfacing of the femur has experienced a revival, particularly in younger and more active patients. The implant is generally cemented onto the reamed trabecular bone and theoretical remodelling for this configuration, as well as uncemented variations, has been studied with relation to component positioning for the most common designs. The purpose of this study was to investigate the influence of different interface conditions, for alternative interior implant geometries, on bone strains in comparison to the native femur, and its consequent remodelling. A cylindrical interior geometry, two conical geometries and a spherical cortex-preserving design were compared with a standard implant (ASR, DePuy International, Ltd., UK), which has a 3° cone. Cemented as well as uncemented line to line and press-fit conditions were modelled for each geometry. A patient-specific finite element model of the proximal femur was used with simulated walking loads. Strain energy density was compared between the reference and resurfaced femur, and input into a remodelling algorithm to predict density changes post-operatively. The common cemented designs (cylindrical, slightly conical) had strain shielding in the superior femoral head (>35% reduction) as well as strain concentrations (strain>5%) in the neck regions near the implant rim. The cortex-preserving (spherical) and strongly conical designs showed less strain shielding. In contrast to the cemented implants, line to line implants showed a density decrease at the centre of the femoral head, while all press-fit versions showed a density increase (>100%) relative to the native femur, which suggests that uncemented press-fit implants could limit bone resorption.  相似文献   

11.
Dental implantology has high success rates, and a suitable estimation of how stresses are transferred to the surrounding bone sheds insight into the correct design of implant features. In this study, we estimate stress transfer properties of four commercial implants (GMI, Lifecore, Intri and Avinent) that differ significantly in macroscopic geometry. Detailed three-dimensional finite element models were adopted to analyse the behaviour of the bone-implant system depending on the geometry of the implant (two different diameters) and the bone-implant interface condition. Occlusal static forces were applied and their effects on the bone, implant and bone-implant interface were evaluated. Large diameters avoided overload-induced bone resorption. Higher stresses were obtained with a debonded bone-implant interface. Relative micromotions at the bone-implant interface were within the limits required to achieve a good osseointegration. We anticipate that the methodology proposed may be a useful tool for a quantitative and qualitative comparison between different commercial dental implants.  相似文献   

12.
This study aimed to predict the distribution of bone trabeculae, as a density change per unit time, around a dental implant based on applying a selected mathematical remodelling model. The apparent bone density change as a function of the mechanical stimulus was the base of the applied remodelling model that describes disuse and overload bone resorption. The simulation was tested in a finite element model of a screw-shaped dental implant in an idealised bone segment. The sensitivity of the simulation to different mechanical parameters was investigated; these included element edge length, boundary conditions, as well as direction and magnitude of the implant loads. The alteration in the mechanical parameters had a significant influence on density distribution and model stability, in particular at the cortical bone region. The remodelling model could succeed to achieve trabeculae-like structure around osseointegrated dental implants. The validation of this model to a real clinical case is required.  相似文献   

13.
目的:利用共振频率测量仪(Osstell)连续监测骨愈合期种植体稳定性变化与早期边缘骨吸收的关系。方法:本研究于2010-2011年期间根据纳入及排除标准连续纳入32名成年男性患者作为实验对象共植入45枚Strauman种植体,每名患者选择一颗(4.8mm×10mm)种植体,共计32颗种植体,种植区位于下颌后牙(骨质均为Ⅱ或Ⅲ类骨)。利用共振频率分析仪(Osstell)测量种植体的稳定性,测量时间点为植入时以及术后第1,2,3,4,6,8,12周。另外,影像学分析测量32颗种植体12周时的边缘骨吸收;结果:本实验中所有种植体在12周均实现骨结合,并成功完成种植修复。通过重复性方差分析,见表1,在种植体植入时,初期稳定系数(ISQ)均值为(79.03±6.756)。术后一周,种植体稳定系数(ISQ)均值均呈下降趋势,至术后第2周时达到最低点,与植入时稳定性有统计学差异(P<0.05)。从术后第3周开始种植体稳定系数(ISQ)均值逐渐上升。其中,稳定系数(ISQ)均值在第6周时与第12周无统计学差异,已达到延期稳定期。32颗种植体在第12周的边缘骨吸收均值为(0.86±0.068mm),而在第12周的种植体的稳定系数均值与种植体植入时的稳定系数均值无统计学差异。结论:本实验通过共振频率测量仪(OsstellTM)连续监测,目前的结果认为种植体愈合期边缘骨吸收对种植体愈合期稳定性变化没有影响。  相似文献   

14.
Aim: The aim of this study was to investigate oral health and oral implant status in a group of edentulous patients receiving long‐term residential or nursing care (LTC), all of whom had implant‐supported fixed or removable dental prostheses. Material and methods: A dental examination was performed on a total of 3310 patients receiving LTC and from this population 35 edentulous patients in whom dental implants had been placed formed the cohort for this study. All examinations were performed by a specialist in hospital dentistry and took place in the patients’ own home environment. Oral health was assessed by means of a protocol which evaluated oral hygiene status, possible oral mucosal inflammation and oral mucosal friction levels. Any problems with the implant‐supported prosthesis, implant mobility or other complications were also assessed. In addition, patients were asked about any oral symptoms and their usual oral hygiene procedures. Results: About half of the subjects (17/35) were registered as having no/mild inflammation with 18 of 35 having moderate/severe inflammation. Twelve of the 35 patients had good/acceptable oral hygiene and 23 of 35 had poor/bad oral hygiene. Twenty‐one of the 35 patients depended on help from the nursing personnel for their daily oral hygiene procedures. Obvious problems with food impaction were noted in 11 patients. A total of 229 implants had been placed in 43 jaws supporting 40 full arch‐fixed prostheses and three implant‐borne overdentures. There was no evidence of mobility or fractures of either the implants or the prostheses. Fifteen implants showed some exposed screw threads. Pus was exuding from one implant site and general peri‐implant gingival hyperplasia was noted in two patients. Twenty‐four patients were completely satisfied with the function and appearance of their implant‐supported prostheses. Two patients were totally dissatisfied. Conclusion: This study indicates that oral implant therapy can be considered as a treatment of choice in elderly patients, even if oral hygiene is sub‐optimal.  相似文献   

15.
The aim of this study was to gain insight into the behaviour of the stresses and strains at the bone–implant interface of an implant-supported fixed partial prosthesis (FPP) in the premaxilla under immediate loading and osseointegrated conditions. Finite element models of a four-unit FPP were generated. An extreme condition was simulated, using only two immediately loaded implants in order to derive recommendations for possible clinical application. Straight and 20°-angled abutments and bonded or sliding contact between the bridge and abutment were simulated. In addition, two models were generated with two completely osseointegrated implants. A 150 N load to the prosthesis at a 45° angle to the long axis of each implant was applied. Minor differences were observed in implant displacements, stress and strain distributions of the two abutment designs. However, bone loading exceeded the physiological limits, including a risk of bone atrophy. A considerable decrease in implant displacements and bone loading was observed in the osseointegrated cases. An FPP supported by only two implants cannot be recommended for immediate loading.  相似文献   

16.
Many unsolved problems in dental implant research concern the interfacial stress distributions between the implant components, as well as between the implant surface and contacting bone. To obtain a mechanical understanding of how vertical and horizontal occlusal forces are distributed in this context, it is crucial to develop in vitro testing systems to measure the force transmission between dental implants and attached prostheses. A new approach to such testing, involving a robotic system, is described in this investigation. The system has been designed to produce simulated mandibular movements and occlusal contact forces so that various implant designs and procedures can be thoroughly tested and evaluated before animal testing or human clinical trials. Two commonly used fixed prosthesis designs used to connect an implant and a tooth, a rigid connection and a nonrigid connection, were fabricated and used for experimental verification. The displacement and force distributions generated during simulated chewing activities were measured in vitro. Force levels, potentially harmful to human bone surrounding the connected dental implant and tooth, were analyzed. These results are useful in the design of prostheses and connecting components that will reduce failures and limit stress transfer to the implant/bone interface.  相似文献   

17.
This case report details the successful rehabilitation of an edentulous patient using a complete upper prosthesis and a lower implant retained overdenture. The provision of care was split between a specialist centre and a primary care setting. This approach reduced inconvenience to the patient. Modern surgical and prosthodontic techniques also reduced the total delivery time. After initial consultation a new set of complete dentures was prescribed with changes in design to the originals. The patient was also planned for placement of two mandibular implants to stabilise and retain the mandibular denture. The first line of treatment involved provision of a new set of dentures constructed by the patient's general dental practitioner. Dental implants were then placed in a specialist centre and the patient returned to the dental practice for attachment of the lower denture to the dental implants. The benefits and success of mandibular implant retained dentures are well documented. With delivery of the overdenture, the patient reported increased satisfaction with his prostheses which allowed him to eat a greater range of foods and enabled him to feel confident when speaking and socialising.  相似文献   

18.
In a dental implant system, the value of stress and its distribution plays a pivotal role on the strength, durability and life of the implant–bone system. A typical implant consists of a Titanium core and a thin layer of biocompatible material such as the hydroxyapatite. This coating has a wide range of clinical applications in orthopedics and dentistry due to its biocompatibility and bioactivity characteristics. Low bonding strength and sudden variation of mechanical properties between the coating and the metallic layers are the main disadvantages of such common implants. To overcome these problems, a radial distributed functionally graded biomaterial (FGBM) was proposed in this paper and the effect of material property on the stress distribution around the dental implant–bone interface was studied. A three-dimensional finite element simulation was used to illustrate how the use of radial FGBM dental implant can reduce the maximum von Mises stress and, also the stress shielding effect in both the cortical and cancellous bones. The results, of course, give anybody an idea about optimized behaviors that can be achieved using such materials. The finite element solver was validated by familiar methods and the results were compared to previous works in the literature.  相似文献   

19.
The aim of this study is to determine the differences in primary stability between conical and cylindrical dental implants. The insertion and removal torques were the parameters used to measure the primary stability of the implants. Ten conical and cylindrical dental implants were positioned in polyurethane foam blocks to simulate bone density classes D1, D2, D3 and D4. The insertion and removal torques were quantified using a digital torque gauge. The maximum insertion torque and the maximum removal torque measured for the D1 and D4 synthetic bone were significantly higher for the conical implants than the cylindrical implants. In this in-vitro model, conical implants show significantly higher primary stability than cylindrical implants for the D1 and D4 synthetic bone classes.  相似文献   

20.
This study investigates the bone/implant mechanical responses in an implant overdenture retained by ball attachments on two conventional regular dental implants (RDI) and four mini dental implants (MDI) using finite element (FE) analysis. Two FE models of overdentures retained by RDIs and MDIs for a mandibular edentulous patient with validation within 6% variation errors were constructed by integrating CT images and CAD system. Bone grafting resulted in 2 mm thickness at the buccal side constructed for the RDIs-supported model to mimic the bone augmentation condition for the atrophic alveolar ridge. Nonlinear hyperelastic material and frictional contact element were used to simulate characteristic of the ball attachment-retained overdentures. The results showed that a denture supported by MDIs presented higher surrounding bone strains than those supported by RDIs under different load conditions. Maximum bone micro strains were up to 6437/2987 and 13323/5856 for MDIs/RDIs under single centric and lateral contacts, respectively. Corresponding values were 4429/2579 and 9557/5774 under multi- centric and lateral contacts, respectively. Bone micro strains increased 2.06 and 1.96-folds under single contact, 2.16 and 2.24-folds under multiple contacts for MDIs and RDIs when lateral to axial loads were compared. The maximum RDIs and MDIs implant stresses in all simulated cases were found by far lower than their yield strength. Overdentures retained using ball attachments on MDIs in poor edentulous bone structure increase the surrounding bone strain over the critical value, thereby damaging the bone when compared to the RDIs. Eliminating the occlusal single contact and oblique load of an implant-retained overdenture reduces the risk for failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号