首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint.

The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatomy. The definition of the joint coordinate system (JCS) is guided by the two degrees of freedom of the joint, i.e. flexion–extension about a trapezium axis and abduction–adduction about a first metacarpal axis. The rotations obtained using three methods are compared on the same data: the fixed axes sequence proposed by Cooney et al., the mobile axes sequence proposed by the ISB and our alternative mobile axes sequence. The rotation amplitudes show a difference of 9° in flexion–extension, 2° in abduction–adduction and 13° in internal–external rotation.

This study emphasizes the importance of adapting the JCS to the functional anatomy of each particular joint.  相似文献   

2.
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°).  相似文献   

3.
The dynamic function of the rabbit temporomandibular joint (TMJ) was analyzed through non-invasive, three-dimensional skeletal kinematics, providing essential knowledge for understanding normal joint motion. The objective of this study was to evaluate and determine repeatable measurements of rabbit TMJ kinematics. Maximal distances, as well as paths were traced and analyzed for the incisors and for the condyle–fossa relationship. From one rabbit to another, the rotations and translations of both the incisors and the condyle relative to the fossa contained multiple clear, repeatable patterns. The slope of the superior/inferior incisor distance with respect to the rotation about the transverse axis was repeatable to 0.14 mm/deg and the right/left incisor distance with respect to the rotation about the vertical axis was repeatable to 0.03 mm/deg. The slope of the superior/inferior condylar translation with respect to the rotational movement about the transverse axis showed a consistent relationship to within 0.05 mm/deg. The maximal translations of the incisors and condyles were also consistent within and between rabbits. With an understanding of the normal mechanics of the TMJ, kinematics can be used to compare and understand TMJ injury and degeneration models.  相似文献   

4.
5.
Computer simulation models have shown that wobbling mass on the lower limb affects the joint kinetics. Our objective was to propose a non-invasive method to estimate bones and wobbling mass kinematics in the lower limb during hopping. The chain kinematic model has set degrees of freedom at the joints and free wobbling bodies. By comparison to a model without wobbling bodies, the marker residual was reduced by 20% but the joint kinematics remains unchanged. Wobbling bodies’ displacements reached 6.9 ± 3.5° and 6.9 ± 2.4 mm relative to the modelled bones. This original method is a first step to assess wobbling mass effect on joint kinetics.  相似文献   

6.
The accurate measurement of the in vivo knee joint kinematics in six degrees-of-freedom (6DOF) remains a challenge in biomedical engineering. We have adapted a dual fluoroscopic imaging system (DFIS) to investigate the various in vivo dynamic knee joint motions. This paper presents a thorough validation of the accuracy and repeatability of the DFIS system when used to measure 6DOF dynamic knee kinematics. First, the validation utilized standard geometric spheres made from different materials to demonstrate the capability of the DFIS technique to determine the object positions under changing speeds. The translational pose of the spheres could be recreated to less than 0.15±0.09 mm for velocities below 300 mm/s. Next, tantalum beads were inserted into the femur and tibia of two fresh frozen cadaver knees to compare the dynamic kinematics measured by matching knee models to the kinematics from the tantalum bead matching—a technique similar to Roentgen stereophotogrammetric analysis (RSA). Each cadaveric knee was attached to the crosshead of a tensile testing machine and vertically translated at a rate of 16.66 mm/s while images were captured with the DFIS. Subsequently, the tibia was held fixed and the femur manually flexed from full extension to 90° of flexion, as the DFIS acquired images. In vitro translation of the cadaver knee using the tensile testing machine deviated from predicted values by 0.08±0.14 mm for the matched knee models. The difference between matching the knee and tantalum bead models during the dynamic flexion–extension motion of the knee was 0.1±0.65°/s in flexion speed; 0.24±0.16 mm in posterior femoral translation; and 0.16±0.61° in internal–external tibial rotation. Finally, we applied the method to investigate the knee kinematics of a living subject during a step ascent and treadmill gait. High repeatability was demonstrated for the in vivo application. Thus, the DFIS provides an easy and powerful tool for accurately determining 6DOF positions of the knee when performing daily functional activities.  相似文献   

7.
The study presents a screening method used to identify the influential parameters of a lower limb model including ligaments, at low numerical cost. Concerning multibody kinematics optimisation, the ligament parameters (isometric length) were found the most influential ones in a previous study. The screening method tested if they remain influential with minimised length variations. The most important parameters for tibiofemoral kinematics were the skin markers, segment lengths and joint parameters, including two ligaments. This was confirmed by a quantitative sensitivity analysis. The screening method has the potential to be used as a stand-alone procedure for a sensitivity analysis.  相似文献   

8.
Ying N  Kim W 《Journal of biomechanics》2002,35(12):146-1657
This paper presents a modified Euler angles method, dual Euler angles approach, to describe general spatial human joint motions. In dual Euler angles approach, the three-dimensional joint motion is considered as three successive screw motions with respect to the axes of the moving segment coordinate system; accordingly, the screw motion displacements are represented by dual Euler angles. The algorithm for calculating dual Euler angles from coordinates of markers on the moving segment is also provided in this study. As an example, the proposed method is applied to describe motions of ankle joint complex during dorsiflexion–plantarflexion. A Flock of Birds electromagnetic tracking device (FOB) was used to measure joint motion in vivo. Preliminary accuracy tests on a gimbal structure demonstrate that the mean errors of dual Euler angles evaluated by using source data from FOB are less than 1° for rotations and 1 mm for translations, respectively. Based on the pilot study, FOB is feasible for quantifying human joint motions using dual Euler angles approach.  相似文献   

9.
Glucans are reported to elicit immune responses through activation of macrophages by a specific interaction of β-glucan with an immune cell-specific (1,3)-β-d-glucan receptor or Dectin-1 receptor. In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were coated with β-glucan in order to target the immune cells residing in the metastatic liver as an aid for discriminating metastasized tumor regions from normal hepatic parenchymal tissue. The morphology of prepared β-glucan-coated SPIONs (Glu-SPIONs) was characterized with dynamic light scattering (DLS) and transmission electron microscopy (TEM). The cytotoxicity of Glu-SPIONs was analyzed and compared to that of dextran- and PVA-coated SPIONs. The uptake of Glu-SPIONs by peritoneal macrophages was also confirmed with Prussian blue staining and MRI phantom tube imaging. The in vivo uptake of Glu-SPIONs in liver and lymph nodes in a metastatic mouse liver model was tracked by MR imaging after the systemic injection. The Glu-SPIONs predominantly accumulated in the macrophages surrounding the metastatic regions of the liver thereby indicating the distribution of tumor cells in the liver. MR imaging of the Glu-SPIONs clearly revealed macro- or micro-metastasized tumor regions throughout the liver, due to the preferential uptake of Glu-SPIONs into macrophages, not tumor cells. The Glu-SPION-accumulating regions were further confirmed with H&E and Prussian blue stainings after tissue sectioning. Based on our study, we propose that Glu-SPIONs can be successfully applied for diagnosing hepatic metastasis.  相似文献   

10.
Pulsed 5.66-GHz microwave energy irradiated a model of a human hand that was positioned above a submerged planar array of 400 hydrophones. Hydrophone response data were analyzed by a computer that graphically reproduced the image.  相似文献   

11.
12.
A kinematic model representing the versatility of the human hand is needed to evaluate biomechanical function and predict injury risk in the workplace. We improved upon an existing optoelectronic-based kinematic hand model with grouped metacarpals by defining segmented metacarpals and adding the trapeziometacarpal joint of the thumb. Eight participants performed three static postures (neutral pose, cylinder grip, cap grip) to evaluate kinematic performance of three different models, with one, two, and four metacarpal segment(s). Mean distal transverse metacarpal arch angles in the four-segment metacarpal model were between 22.0° ± 3.3° (neutral pose) and 32.1° ± 3.7° (cap grip). Representation of the metacarpals greatly influenced metacarpophalangeal joint rotations. Both the two- and four-segment metacarpal models displayed significantly lower metacarpophalangeal joint ‘supination’ angles (than the one-segment model) for the fourth and fifth fingers. However, the largest reductions were for the four- versus one-segment models, with mean differences ranging from 9.3° (neutral pose) to 17.0° (cap grip) for the fourth finger and 16.3° (neutral pose) to 33.0° (cylinder grip) for the fifth finger. MCP joint abduction/adduction angles of the fourth and fifth fingers also decreased with segmentation of the metacarpals, although the lowest magnitudes generally occurred in the four-segment model. Overall, the four-segment metacarpal model produced the lowest accessory rotations in non-dominant axes, and best matched previous radiological studies that found MCP joint pronation/supination angles were typically less than 10°. The four-segment metacarpal model, with improved anatomic fidelity, will better serve future studies of detailed actions of the hand in clinical or work applications.  相似文献   

13.
Large and medium size undecalcined joints were embedded in methylmethacrylate resin. Sections of 600 μm prepared from polymethylmethacrylate blocks show minimal distortion and are suitable for surface staining and three-dimensional reconstruction. The 5 μm sections prepared from these slabs retain good cytological detail. This method permits the examination of musculoskeletal organ systems at both macroscopic and microscopic levels.  相似文献   

14.
Deep vein thrombosis (DVT) is a disorder when a blood clot (thrombus) is formed in one of the deep veins. These clots detach from the original sites and circulate in the blood stream at high velocities. Diagnosing these blood clots at an early stage is necessary to decide the treatment strategy. For label-free, in vivo, and real-time detection, high framerate photoacoustic imaging can be used. In this work, a dual modal clinical ultrasound and photoacoustic (PA) system is used for the high framerate PA imaging of circulating blood clots in blood at linear velocities up to 107 cm/sec. Blood clot had 1.4 times higher signal-to-noise ratio (SNR) in the static mode and 1.3 times higher SNR compared to blood PA signal in the flow experiments. This work demonstrates that fast-moving circulating blood clots are easy to recognize against the background PA signal and may aid in early diagnosis.  相似文献   

15.
Multi-body musculoskeletal models that can be used concurrently to predict joint contact pressures and muscle forces would be extremely valuable in studying the mechanics of joint injury. The purpose of this study was to develop an anatomically correct canine stifle joint model and validate it against experimental data. A cadaver pelvic limb from one adult dog was used in this study. The femoral head was subjected to axial motion in a mechanical tester. Kinematic and force data were used to validate the computational model. The maximum RMS error between the predicted and measured kinematics during the complete testing cycle was 11.9 mm translational motion between the tibia and the femur and 4.3° rotation between patella and femur. This model is the first step in the development of a musculoskeletal model of the hind limb with anatomically correct joints to study cartilage loading under dynamic conditions.  相似文献   

16.
Magnetic resonance imaging (MRI) is an easily automated, reliable technique to investigate axial mixing within rotating drums. Moist bran can be clearly differentiated from dry bran using MRI allowing a non-segregating tracer for axial mixing. For a 20-cm diameter drum, the axial dispersion coefficient in the particle bed was 0.51 cm s–2. Axial dispersion is scale-dependent.  相似文献   

17.
Bone tissue is a complex multilevel composite which has the ability to sense ad respond to its mechanical environment. It is believed that bone cells called osteocytes within the bone matrix sense the mechanical environment and determine whether structural alterations are needed. At present it is not known, however, how loads are transferred from the whole bone level to cells. A computational procedure combining representative volume element (RVE) based homogenization theory with digital imaging is proposed to estimate strains at various levels of bone structure. Bone tissue structural organization and RVE based analysis are briefly reviewed. The digital image based computational procedure was applied to estimate strains in individual trabeculae (first-level microstructure). Homogenization analysis of an idealized model was used to estimate strains at one level of bone structure around osteocyte lacunae (second-level trabecular microstructure). The results showed that strain at one level of bone structure is amplified to a broad range at the next microstructural level. In one case, a zeor-level tensile principal strain of 495 muE engendered strains ranging between -1000 and 7000 muE in individual trabeculae (first-level microstructure). Subsequently, a first-level tensile principal strains of 1325 muE within an inidividual trabecula engendered strains ranging between 782 and 2530 muE around osteocyte lacunae. Lacunar orientation was found to influence strains around osteocyte lacunae much more than lacunar ellipticity. In conclusion, the computational procedure combining homogenization theory with digital imaging can proveide estimates of cell level strains within whole bones. Such results may be used to bridge experimental studies of bone adaptation at the whole bone and cell culture level. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
19.
20.
The International Society of Biomechanics detailed the recommendations for 3D kinematics of intervertebral movements (Wu, et al. 2002. J Biomech. 35:543–548), but does not specify how to adapt this proposal to describe the kinematics of the cervical spine, between the head and the thorax. The analysis of the literature shows that no consensus exists at the present time on this subject. The objective of our study was to identify the reference points that formed the most rigid triplet allowing building an optimal thorax segment coordinate system (SCS). We thus measured the variations of distances between markers placed on various anatomical landmarks, and then the deformations of the combinations of three markers on different cervical movements of a sample of 10 asymptomatic subjects. The results show that the triplet formed by the sternum and both acromions undergoes less deformation on the flexion–extension movement. For all the other movements (lateral bending, axial rotation and complex movements), the triplet formed by sternum, T3 and TH (positioned on the thoracic spinal column, in a horizontal plane containing the sternal marker), undergoes less deformation. As a conclusion, the optimal triplet to define the thorax SCS for 3D kinematical analysis of the cervical spine is that formed by the markers: sternum, T3 and TH. This triplet makes it possible to define an orthonormal SCS, the axes of which coincide with anatomical directions, i.e. with the functional axes of the movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号