首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local wall stress is the pivotal determinant of the heart muscle's systolic function. Under in vivo conditions, however, such stresses cannot be measured systematically and quantitatively. In contrast, imaging techniques based on magnetic resonance (MR) allow the determination of the deformation pattern of the left ventricle (LV) in vivo with high accuracy. The question arises to what extent deformation measurements are significant and might provide a possibility for future diagnostic purposes. The contractile forces cause deformation of LV myocardial tissue in terms of wall thickening, longitudinal shortening, twisting rotation and radial constriction. The myocardium is thereby understood to act as a densely interlaced mesh. Yet, whole cycle image sequences display a distribution of wall strains as function of space and time heralding a significant amount of inhomogeneity even under healthy conditions. We made similar observations previously by direct measurement of local contractile activity. The major reasons for these inhomogeneities derive from regional deviations of the ventricular walls from an ideal spheroidal shape along with marked disparities in focal fibre orientation. In response to a lack of diagnostic tools able to measure wall stress in clinical routine, this communication is aimed at an analysis and functional interpretation of the deformation pattern of an exemplary human heart at end-systole. To this end, the finite element (FE) method was used to simulate the three-dimensional deformations of the left ventricular myocardium due to contractile fibre forces at end-systole. The anisotropy associated with the fibre structure of the myocardial tissue was included in the form of a fibre orientation vector field which was reconstructed from the measured fibre trajectories in a post mortem human heart. Contraction was modelled by an additive second Piola-Kirchhoff active stress tensor. As a first conclusion, it became evident that longitudinal fibre forces, cross-fibre forces and shear along with systolic fibre rearrangement have to be taken into account for a useful modelling of systolic deformation. Second, a realistic geometry and fibre architecture lead to typical and substantially inhomogeneous deformation patterns as they are recorded in real hearts. We therefore, expect that the measurement of systolic deformation might provide useful diagnostic information.  相似文献   

2.

The course of diseases such as hypertension, systolic heart failure and heart failure with a preserved ejection fraction is affected by interactions between the left ventricle (LV) and the vasculature. To study these interactions, a computationally efficient, biophysically based mathematical model for the circulatory system is presented. In a four-chamber model of the heart, the LV is represented by a previously described low-order, wall volume-preserving model that includes torsion and base-to-apex and circumferential wall shortening and lengthening, and the other chambers are represented using spherical geometries. Active and passive myocardial mechanics of all four chambers are included. The cardiac model is coupled with a wave propagation model for the aorta and a closed lumped-parameter circulation model. Parameters for the normal heart and aorta are determined by fitting to experimental data. Changes in the timing and magnitude of pulse wave reflections by the aorta are demonstrated with changes in compliance and taper of the aorta as seen in aging (decreased compliance, increased diameter and length), and resulting effects on LV pressure–volume loops and LV fiber stress and sarcomere shortening are predicted. Effects of aging of the aorta combined with reduced LV contractile force (failing heart) are examined. In the failing heart, changes in aortic properties with aging affect stroke volume and sarcomere shortening without appreciable augmentation of aortic pressure, and the reflected pressure wave contributes an increased proportion of aortic pressure.

  相似文献   

3.
Left-ventricular (LV) remodelling, associated with diastolic heart failure, is driven by an increase in myocardial stress. Therefore, normalisation of LV wall stress is the cornerstone of many therapeutic treatments. However, information regarding such regional stress–strain for human LV is still limited. Thus, the objectives of our study were to determine local diastolic stress–strain field in healthy LVs, and consequently, to identify the regional variations amongst them due to geometric heterogeneity. Effects of LV base movement on diastolic model predictions, which were ignored in the literature, were further explored. Personalised finite-element modelling of five normal human bi-ventricles was carried out using subject-specific myocardium properties. Model prediction was validated individually through comparison with end-diastolic volume and a new shape-volume based measurement of LV cavity, extracted from magnetic resonance imaging. Results indicated that incorporation of LV base movement improved the model predictions (shape-volume relevancy of LV cavity), and therefore, it should be considered in future studies. The LV endocardium always experienced higher fibre stress compared to the epicardium for all five subjects. The LV wall near base experienced higher stress compared to equatorial and apical locations. The lateral LV wall underwent greater stress distribution (fibre and sheet stress) compared to other three regions. In addition, normal ranges of different stress–strain components in different regions of LV wall were reported for five healthy ventricles. This information could be used as targets for future computational studies to optimise diastolic heart failure treatments or design new therapeutic interventions/devices.  相似文献   

4.
Increased glucose utilization and regional differences in contractile function are well-known alterations of the failing heart and play an important pathophysiological role. We tested whether, similar to functional derangement, changes in glucose uptake develop following a regional pattern. Heart failure was induced in 13 chronically instrumented minipigs by pacing the left ventricular (LV) free wall at 180 beats/min for 3 wk. Regional changes in contractile function and stress were assessed by magnetic resonance imaging, whereas regional flow and glucose uptake were measured by positron emission tomography utilizing, respectively, the radiotracers [(13)N]ammonia and (18)F-deoxyglucose. In heart failure, LV end-diastolic pressure was 20 +/- 4 mmHg, and ejection fraction was 35 +/- 4% (all P < 0.05 vs. control). Sustained pacing-induced dyssynchronous LV activation caused a more pronounced decrease in LV systolic thickening (7.45 +/- 3.42 vs. 30.62 +/- 8.73%, P < 0.05) and circumferential shortening (-4.62 +/- 1.0 vs. -7.33 +/- 1.2%, P < 0.05) in the anterior/anterior-lateral region (pacing site) compared with the inferoseptal region (opposite site). Conversely, flow was reduced significantly by approximately 32% compared with control and was lower in the opposite site region. Despite these nonhomogeneous alterations, regional end-systolic wall stress was uniformly increased by 60% in the failing LV. Similar to wall stress, glucose uptake markedly increased vs. control (0.24 +/- 0.004 vs. 0.07 +/- 0.01 micromol x min(-1) x g(-1), P < 0.05), with no significant regional differences. In conclusion, high-frequency pacing of the LV free wall causes a dyssynchronous pattern of contraction that leads to progressive cardiac failure with a marked mismatch between increased glucose uptake and regional contractile dysfunction.  相似文献   

5.
We investigated the determinants of ventricular early diastolic lengthening and mechanics of suction using a mathematical model of the left ventricle (LV). The model was based on a force balance between the force represented by LV pressure (LVP) and active and passive myocardial forces. The predicted lengthening velocity (e') from the model agreed well with measurements from 10 dogs during 5 different interventions (R = 0.69, P < 0.001). The model showed that e' was increased when relaxation rate and systolic shortening increased, when passive stiffness was decreased, and when the rate of fall of LVP during early filling was decreased relative to the rate of fall of active stress. We first defined suction as the work the myocardium performed to pull blood into the ventricle. This occurred when contractile active forces decayed below and became weaker than restoring forces, producing a negative LVP. An alternative definition of suction is filling during falling pressure, commonly believed to be caused by release of restoring forces. However, the model showed that this phenomenon also occurred when there had been no systolic compression below unstressed length and therefore in the absence of restoring forces. In conclusion, relaxation rate, LVP, systolic shortening, and passive stiffness were all independent determinants of e'. The model generated a suction effect seen as lengthening occurring during falling pressure. However, this was not equivalent with the myocardium performing pulling work on the blood, which was performed only when restoring forces were higher than remaining active fiber force, corresponding to a negative transmural pressure.  相似文献   

6.
Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload.  相似文献   

7.
Preclinical and clinical studies have demonstrated that stem cell transplantation can improve the left ventricular (LV) contractile performance, yet the underlying mechanisms remain unknown. We examined whether mesenchymal stem cell (MSC) transplantation-induced beneficial effects are secondary to paracrine-associated improvements in LV contractile performance, wall stress, and myocardial bioenergetics in hearts with postinfarction LV remodeling. Myocardial contractile function and bioenergetics were compared 4 wk after acute myocardial infarction in normal pigs (n = 6), untreated pigs with myocardial infarction (MI group; n = 6), and pigs receiving autologous MSC transplantation (MI + MSC group; n = 5). A distal occlusion of the left anterior descending coronary artery instigated significant myocardial hypertrophy. Ejection fraction decreased from 55.3 +/- 3.1% (normal) to 30.4 +/- 2.3% (MI group; P < 0.01) and to 45.4 +/- 3.1% (MI + MSC group; P < 0.01 vs. MI). Hearts in the MI group developed severe contractile dyskinesis in the infarct zone and border zone (BZ). MSC transplantation significantly improved contractile performance from dyskinesis to active contraction (P < 0.01 vs. MI). BZ systolic wall stress was severely increased in MI hearts but significantly improved after MSC transplantation (P < 0.01 vs. MI). The BZ demonstrated profound bioenergetic abnormalities in MI pigs; this was significantly improved after MSC transplantation (P < 0.01 vs. MI). Patchy spared myocytes were found in the infarct zone of hearts receiving MSC transplantation but not in control hearts. These data demonstrate that MSC transplantation into the BZ causes significant improvements in myocardial contractile performance and reduction in wall stress, which ultimately results in significant bioenergetic improvements. Low cell engraftment indicates that MSCs did not provide a structural contribution to the damaged heart and that the observed beneficial effects likely resulted from paracrine repair mechanisms.  相似文献   

8.
Summary The pH sensitivity of the Ca2+-activated myosin ATPase in atrial, ventricular and conduction tissue of human hearts has been established. Heterogeneity with respect to ATPase activity is shown not only to exist between the atrial, the ventricular myocardium and the conduction system but alsowithin both the ordinary atrial and ventricular myocardium andwithin the conduction system. These observations are related to the polymorphism of the myosin molecule and suggest that fibre types with different contractile properties co-exist in the human heart.  相似文献   

9.
To clarify whether or not systolic and diastolic function of the human left ventricle (LV) were decreased during acute hypoxia, at rest and with exercise, 14 healthy male volunteers [age 25.9 (SD 3.0) years, height 182.9 (SD 7.1) cm, body mass 75.9 (SD 6.9)kg] were examined using M-mode and 2D-mode echocardiography to determine the systolic LV function as well as Doppler-echocardiography for the assessment of diastolic LV function on 2 separate test days. In random order, the subjects breathed either air on 1 day (N) or a gas mixture with reduced oxygen content on the other (H; oxygen fraction in inspired gas 0.14). Measurements on either day were made at rest, several times during incremental cycle exercise in a supine position (6-min increments of 50 W, maximal load 150 W) and in 6th min of recovery. Corresponding measurements during N and H were compared statistically. Arterial O2 tension (P aO2) was normal on N-day. All subjects showed a marked acute hypoxia at rest [P aO2, 54.5 (SD 4.6) mmHg], during exercise and recovery on H-day. The latter was associated with tachycardia compared to N-day. All echocardiographic measurements at rest were within the limits of normal values on both test days. Ejection time, end-systolic and end-diastolic left ventricular dimensions as well as the thickness of left posterior wall and of interventricular septum showed no statistically significant influence of H either at rest or during exercise. Stroke volume and cardiac output were always higher on H-day, which could be attributed to a slight reduction in end-systolic volume with unaffected end-diastolic volume as well as to increased heart rates. Among the indices of systolic LV function the fractions of thickening in the left ventricular posterior wall and interventricular septum showed no differences between H and N at rest or during exercise. However, fibre shortening, ejection fraction and mean circumferential fibre shortening were increased on H-day on all occasions. The mitral-valve-Doppler ratio, the index of diastolic LV function, was decreased with H at rest, showed a more pronounced reduction during exercise and was still lower in 6th min of recovery compared to N-day. It was concluded that with acute hypoxia of the severity applied in this study left ventricular systolic function in our healthy subjects showed a pronounced improvement and left ventricular diastolic function was reduced, both at rest and with exercise.  相似文献   

10.
With aging, structural and functional changes occur in the myocardium without obvious impairment of systolic left ventricular (LV) function. Transmural differences in myocardial vulnerability for these changes may result in increase of transmural inhomogeneity in contractile myofiber function. Subendocardial fibrosis and impairment of subendocardial perfusion due to hypertension might change the transmural distribution of contractile myofiber function. The ratio of LV torsion to endocardial circumferential shortening (torsion-to-shortening ratio; TSR) during systole reflects the transmural distribution of contractile myofiber function. We investigated whether the transmural distribution of systolic contractile myofiber function changes with age. Magnetic resonance tissue tagging was performed to derive LV torsion and endocardial circumferential shortening. TSR was quantified in asymptomatic young [age 23.2 (SD 2.6) yr, n = 15] and aged volunteers [age 68.8 (SD 4.4) yr, n = 16]. TSR and its standard deviation were significantly elevated in the aged group [0.47 (SD 0.12) aged vs. 0.34 (SD 0.05) young; P = 0.0004]. In the aged group, blood pressure and the ratio of LV wall mass to end-diastolic volume were mildly elevated but could not be correlated to the increase in TSR. There were no significant differences in other indexes of systolic LV function such as end-systolic volume and ejection fraction. The elevated systolic TSR in the asymptomatic aged subjects suggests that aging is associated with local loss of contractile myofiber function in the subendocardium relative to the subepicardium potentially caused by subclinical pathological incidents.  相似文献   

11.
Computational models are increasingly being used to investigate the mechanical properties of cardiac tissue. While much insight has been gained from these studies, one important limitation associated with computational modeling arises when using in vivo images of the heart to generate the reference state of the model. An unloaded reference configuration is needed to accurately represent the deformation of the heart. However, it is rare for a beating heart to actually reach a zero-pressure state during the cardiac cycle. To overcome this, a computational technique was adapted to determine the unloaded configuration of an in vivo porcine left ventricle (LV). In the current study, in vivo measurements were acquired using magnetic resonance images (MRI) and synchronous pressure catheterization in the LV (N = 5). The overall goal was to quantify the effects of using early–diastolic filling as the reference configuration (common assumption used in modeling) versus using the unloaded reference configuration for predicting the in vivo properties of LV myocardium. This was accomplished by using optimization to minimize the difference between MRI measured and finite element predicted strains and cavity volumes. The results show that when using the unloaded reference configuration, the computational method predicts material properties for LV myocardium that are softer and less anisotropic than when using the early-diastolic filling reference configuration. This indicates that the choice of reference configuration could have a significant impact on capturing the realistic mechanical response of the heart.  相似文献   

12.
Injectable hydrogels are a potential therapy for mitigating adverse left ventricular (LV) remodeling after myocardial infarction (MI). Previous studies using magnetic resonance imaging (MRI) have shown that hydrogel treatment improves systolic strain in the borderzone (BZ) region surrounding the infarct. However, the corresponding contractile properties of the BZ myocardium are still unknown. The goal of the current study was to quantify the in vivo contractile properties of the BZ myocardium post-MI in an ovine model treated with an injectable hydrogel. Contractile properties were determined 8 weeks following posterolateral MI by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. This was accomplished by using a combination of MRI, catheterization, finite element modeling, and numerical optimization. Results show contractility in the BZ of animals treated with hydrogel injection was significantly higher than untreated controls. End-systolic (ES) fiber stress was also greatly reduced in the BZ of treated animals. The passive stiffness of the treated infarct region was found to be greater than the untreated control. Additionally, the wall thickness in the infarct and BZ regions was found to be significantly higher in the treated animals. Treatment with hydrogel injection significantly improved BZ function and reduced LV remodeling, via altered MI properties. These changes are linked to a reduction in the ES fiber stress in the BZ myocardium surrounding the infarct. The current results imply that injectable hydrogels could be a viable therapy for maintaining LV function post-MI.  相似文献   

13.

A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each mode to wall motion is determined by a corresponding time-dependent deformation variable. The principle of virtual work is applied to these deformation variables, yielding a system of ordinary differential equations for LV dynamics, including effects of muscle fiber orientations, active and passive stresses, and surface tractions. Passive stress is governed by a transversely isotropic elastic model. Active stress acts in the fiber direction and incorporates length–tension and force–velocity properties of cardiac muscle. Preload and afterload are represented by lumped vascular models. The variational equations and their numerical solutions are verified by comparison to analytic solutions of the strong form equations. Deformation modes are constructed using Fourier series with an arbitrary number of terms. Greater numbers of deformation modes increase deformable model resolution but at increased computational cost. Simulations of normal LV motion throughout the cardiac cycle are presented using models with 8, 23, or 46 deformation modes. Aggregate quantities that describe LV function vary little as the number of deformation modes is increased. Spatial distributions of stress and strain change as more deformation modes are included, but overall patterns are conserved. This approach yields three-dimensional simulations of the cardiac cycle on a clinically relevant time-scale.

  相似文献   

14.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

15.
B-type natriuretic peptide and wall stress in dilated human heart   总被引:1,自引:0,他引:1  
Background Although B-type natriuretic peptide (BNP) is used as complimentary diagnostic tool in patients with unknown thoracic disorders, many other factors appear to trigger its release. In particular, it remains unresolved to what extent cellular stretch or wall stress of the whole heart contributes to enhanced serum BNP concentration. Wall stress cannot be determined directly, but has to be calculated from wall volume, cavity volume and intraventricular pressure of the heart. The hypothesis was, therefore, addressed that wall stress as determined by cardiac magnetic resonance imaging (CMR) is the major determinant of serum BNP in patients with a varying degree of left ventricular dilatation or dysfunction (LVD). Methods A thick-walled sphere model based on volumetric analysis of the LV using CMR was compared with an echocardiography-based approach to calculate LV wall stress in 39 patients with LVD and 21 controls. Serum BNP was used as in vivo marker of a putatively raised wall stress. Nomograms of isostress lines were established to assess the extent of load reduction that is necessary to restore normal wall stress and related biochemical events. Results Both enddiastolic and endsystolic LV wall stress were correlated with the enddiastolic LV volume (r = 0.54, P < 0.001; r = 0.81, P < 0.001). LV enddiastolic wall stress was related to pulmonary pressure (capillary: r = 0.69, P < 0.001; artery: r = 0.67, P < 0.001). Although LV growth was correlated with the enddiastolic and endsystolic volume (r = 0.73, P < 0.001; r = 0.70, P < 0.001), patients with LVD exhibited increased LV wall stress indicating an inadequately enhanced LV growth. Both enddiastolic (P < 0.05) and endsystolic (P < 0.01) wall stress were increased in patients with increased BNP. In turn, BNP concentration was elevated in individuals with increased enddiastolic wall stress (>8 kPa: 587 +/- 648 pg/ml, P < 0.05; >12 kPa: 715 +/- 661 pg/ml, P < 0.001; normal < or =4 kPa: 124 +/- 203 pg/ml). Analysis of variance revealed LV enddiastolic wall stress as the only independent hemodynamic parameter influencing BNP (P < 0.01). Using nomograms with "isostress" curves, the extent of load reduction required for restoring normal LV wall stress was assessed. Compared with the CMR-based volumetric analysis for wall stress calculation, the echocardiography based approach underestimated LV wall stress particularly of dilated hearts. Conclusions In patients with LVD, serum BNP was increased over the whole range of stress values which were the only hemodynamic predictors. Cellular stretch appears to be a major trigger for BNP release. Biochemical mechanisms need to be explored which appear to operate over this wide range of wall stress values. It is concluded that the diagnostic use of BNP should primarily be directed to assess ventricular wall stress rather than the extent of functional ventricular impairment in LVD.  相似文献   

16.

Background

The detection of regional wall motion abnormalities is the cornerstone of stress echocardiography. Today, stress echo shows increasing trends of utilization due to growing concerns for radiation risk, higher cost and stronger environmental impact of competing techniques. However, it has also limitations: underused ability to identify factors of clinical vulnerability outside coronary artery stenosis; operator-dependence; low positivity rate in contemporary populations; intermediate risk associated with a negative test; limited value of wall motion beyond coronary artery disease. Nevertheless, stress echo has potential to adapt to a changing environment and overcome its current limitations.

Integrated-quadruple stress-echo

Four parameters now converge conceptually, logistically, and methodologically in the Integrated Quadruple (IQ)-stress echo. They are: 1- regional wall motion abnormalities; 2-B-lines measured by lung ultrasound; 3-left ventricular contractile reserve assessed as the stress/rest ratio of force (systolic arterial pressure by cuff sphygmomanometer/end-systolic volume from 2D); 4- coronary flow velocity reserve on left anterior descending coronary artery (with color-Doppler guided pulsed wave Doppler). IQ-Stress echo allows a synoptic functional assessment of epicardial coronary artery stenosis (wall motion), lung water (B-lines), myocardial function (left ventricular contractile reserve) and coronary small vessels (coronary flow velocity reserve in mid or distal left anterior descending artery). In “ABCD” protocol, A stands for Asynergy (ischemic vs non-ischemic heart); B for B-lines (wet vs dry lung); C for Contractile reserve (weak vs strong heart); D for Doppler flowmetry (warm vs cold heart, since the hyperemic blood flow increases the local temperature of the myocardium). From the technical (acquisition/analysis) viewpoint and required training, B-lines are the kindergarten, left ventricular contractile reserve the primary (for acquisition) and secondary (for analysis) school, wall motion the university, and coronary flow velocity reserve the PhD program of stress echo.

Conclusion

Stress echo is changing. As an old landline telephone with only one function, yesterday stress echo used one sign (regional wall motion abnormalities) for one patient with coronary artery disease. As a versatile smart-phone with multiple applications, stress echo today uses many signs for different pathophysiological and clinical targets. Large scale effectiveness studies are now in progress in the Stress Echo2020 project with the omnivorous “ABCD” protocol.
  相似文献   

17.
Regions of myocardial infarct (MI) are surrounded by a border zone (BZ) of normally perfused but dysfunctional myocardium. Although systolic dysfunction has been attributed to elevated wall stress in this region, there is evidence that intrinsic abnormalities of contractile performance exist in BZ myocardium. This study examined whether decreases of high-energy phosphates (HEP) and mitochondrial F(1)F(0)-ATPase (mtATPase) subunits typical of failing myocardium exist in BZ myocardium of compensated postinfarct remodeled hearts. Eight pigs were studied 6 wk after MI was produced by ligation of the left anterior descending coronary artery (LAD) distal to the second diagonal. Animals developed compensated LV remodeling with a decrease of ejection fraction from 54.6 +/- 5.4% to 31 +/- 2.1% (MRI) 5 wk after LAD occlusion. The remote zone (RZ) myocardium demonstrated modest decreases of ATP and mtATPase components. In contrast, BZ myocardium demonstrated profound abnormalities with ATP levels decreased to 42% of normal, and phosphocreatine-to-ATP ratio ((31)P-magnetic resonance spectroscopy) decreased from 2.06 +/- 0.19 in normal hearts to 1.07 +/- 0.10, with decreases in alpha-, beta-, OSCP, and IF(1) subunits of mtATPase, especially in the subendocardium. The reduction of myocardial creatine kinase isoform protein expression was also more severe in the BZ relative to the RZ myocardium. These abnormalities were independent of a change in mitochondrial content because the mitochondrial citrate synthase protein level was not different between the BZ and RZ. This regional heterogeneity of ATP content and expression of key enzymes in ATP production suggests that energetic insufficiency in the peri-infarct region may contribute to the transition from compensated LV remodeling to congestive heart failure.  相似文献   

18.

The purpose of this research is to study the growth of the normal human left ventricle (LV) during the fetal period from 14 to 40 weeks of gestation. A new constitutive law for the active myocardium describing the mechanical properties of the active muscle during the whole cardiac cycle has been proposed. The LV model is a thick-walled, incompressible, hyperelastic cylinder, with families of helicoidal fibers running on cylindrical surfaces [1] . Based on the works of Lin and Taber [2] done on the embryonic chick heart, we use for the human fetal heart a growth law in which the growth rate depends on the wall stresses. The parameters of the growth law are adapted to agree with sizes and volumes inferred from two dimensional ultrasound measurements performed on 18 human fetuses. Then calculations are performed to extrapolate the cardiac performance during normal growth of the fetal LV. The results presented support the idea that a growth law in which the growth rate depends linearly on the mean wall stresses averaged through the space and during whole cardiac cycle, is adapted to the normal human fetal LV development.  相似文献   

19.
Ventricular loading conditions are crucial determinants of cardiac function and prognosis in heart failure. B-type natriuretic peptide (BNP) is mainly stored in the ventricular myocardium and is released in response to an increased ventricular filling pressure. We examined, therefore, the hypothesis that BNP serum concentrations are related to ventricular wall stress. Cardiac magnetic resonance imaging (MRI) was used to assess left ventricular (LV) mass and cardiac function of 29 patients with dilated cardiomyopathy and 5 controls. Left ventricular wall stress was calculated by using a thick-walled sphere model, and BNP was assessed by immunoassay. LV mass (r = 0.73, p < 0.001) and both LV end-diastolic (r = 0.54, p = 0.001) and end-systolic wall stress (r = 0.66, p < 0.001) were positively correlated with end-diastolic volume. LV end-systolic wall stress was negatively related to LV ejection fraction (EF), whereas end-diastolic wall stress was not related to LVEF. BNP concentration correlated positively with LV end-diastolic wall stress (r = 0.50, p = 0.002). Analysis of variance revealed LV end-diastolic wall stress as the only independent hemodynamic parameter influencing BNP (p < 0.001). The present approach using a thick-walled sphere model permits determination of mechanical wall stress in a clinical routine setting using standard cardiac MRI protocols. A correlation of BNP concentration with calculated LV stress was observed in vivo. Measurement of BNP seems to be sufficient to assess cardiac loading conditions. Other relations of BNP with various hemodynamic parameters (e.g., EF) appear to be secondary. Since an increased wall stress is associated with cardiac dilatation, early diagnosis and treatment could potentially prevent worsening of the outcome.  相似文献   

20.
Short-term hibernating myocardium is characterized by reduced contractile function during persistent moderate ischemia, the recovery of metabolic parameters, and the absence of necrosis. To study the afterload dependence of regional wall excursion in short-term hibernating myocardium, in 11 enflurane-anesthetized swine the left anterior descending coronary artery was cannulated and hypoperfused for 90 min to reduce anterior systolic wall thickening (WT, sonomicrometry) by 60%. Under control conditions, at 5 and 90 min ischemia the descending thoracic aorta was acutely constricted to increase left ventricular (LV) pressure by 30 mmHg. Under control conditions, increased LV pressure resulted in decreased WT [i.e., a negative slope of the relationship between WT and LV end-systolic pressure: -11.2 +/- 4.2 (SD) microm/mmHg]. This slope was further significantly decreased at 5 min ischemia (-26.5 +/- 8.8 microm/mmHg) but returned toward control values in short-term hibernating myocardium at 90 min ischemia (-17.2 +/- 6.6 microm/mmHg). At 30 min reperfusion, the slope was once more significantly decreased (-27.8 +/- 8.1 microm/mmHg). In conclusion, WT in short-term hibernating myocardium is less afterload dependent than in acutely ischemic and reperfused myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号