首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The adaptation of cancellous bone to mechanical forces is well recognized. Theoretical models for predicting cancellous bone architecture have been developed and have mainly focused on the distribution of trabecular mass or the apparent density. The purpose of this study was to develop a theoretical model which can simultaneously predict the distribution of trabecular orthotropy/orientation, as represented by the fabric tensor, along with apparent density. Two sets of equations were derived under the assumption that cancellous bone is a biological self-optimizing material which tends to minimize strain energy. The first set of equations provide the relationship between the fabric tensor and stress tensor, and have been verified to be consistent with Wolff’s law of trabecular architecture, that is, the principal directions of the fabric tensor coincide with the principal stress trajectories. The second set of equations yield the apparent density from the stress tensor, which was shown to be identical to those obtained based on local optimization with strain energy density of true bone tissue as the objective function. These two sets of equations, together with elasticity field equations, provide a complete mathematical formulation for the adaptation of cancellous bone. Received: 25 February 1997/Revised version: 23 September 1997  相似文献   

2.
Motivated by mechanical analysis of bones and bone-implant systems, a 3D constitutive law describing the macroscopic mechanical behaviour of both cortical and trabecular bone in cyclic (not fatigue) overloads is developed. The proposed model which mathematical formulation is established within the framework of generalized standard materials accounts for three distinct material evolution modes where elastic, plastic and damage aspects are closely related. The anisotropic elasticity of bone is described by a morphology-based model and distinct damage behaviour in tension and compression by a halfspacewise generalized Hill criterion. The plastic criterion is based on the intact elastic compliance tensor. The algorithm applies three distinct projections based on the relationship between the internal variables and criteria. Their respective consistent tangent operators are presented. Numerical resolutions of several boundary value problems and a biomechanical application are presented to illustrate the potential of the constitutive model and demonstrate the expected quadratic convergence of the algorithm.  相似文献   

3.
Two-dimensional simulation of trabecular surface remodeling was conducted for a human proximal femur to investigate the structural change of cancellous bone toward a uniform stress state. Considering that a local mechanical stimulus plays an important role in cellular activities in bone remodeling, local stress nonuniformity was assumed to drive trabecular structural change to seek a uniform stress state. A large-scale pixel-based finite element model was used to simulate structural changes of individual trabeculae over the entire bone. As a result, the initial structure of trabeculae changed from isotropic to anisotropic due to trabecular microstructural changes caused by surface remodeling according to the mechanical environment in the proximal femur. Under a single-loading condition, it was shown that the apparent structural property evaluated by fabric ellipses corresponded to the apparent stress state in cancellous bone. As is observed in the actual bone, a distributed trabecular structure was obtained under a multiple-loading condition. Through these studies, it was concluded that trabecular surface remodeling toward a local uniform stress state at the trabecular level could naturally bring about functional adaptation phenomenon at the apparent tissue level. The proposed simulation model would be capable of providing insight into the hierarchical mechanism of trabecular surface remodeling at the microstructural level up to the apparent tissue level.  相似文献   

4.
5.
Subject-specific finite element models are an extensively used tool for the numerical analysis of the biomechanical behaviour of human bones. However, bone modelling is not an easy task due to the complex behaviour of bone tissue, involving non-homogeneous and anisotropic mechanical properties. Moreover, bone is a living tissue and therefore its microstructure and mechanical properties evolve with time in a known process called bone remodelling. This phenomenon has been widely studied, many being the numerical models that have been formulated to predict density distribution and its evolution in several bones. The aim of the present study is to assess the capability of a bone remodelling model to predict the bone density distribution of different types of human bone (femur, tibia and mandible) comparing the obtained results with the bone density estimated by means of computerised tomography. Good accuracy was observed for the bone remodelling predictions including the thickness of the cortical layer.  相似文献   

6.
An anisotropic mechanical behaviour of cortical bone and its intrinsic hierarchical microstructure act as protective mechanisms to prevent catastrophic failure due to natural loading conditions; however, they increase the extent of complexity of a penetration process in the case of orthopaedic surgery. Experimental results available in literature provide only limited information about processes in the vicinity of a tool–bone interaction zone. Also, available numerical models the bone-cutting process do not account for material anisotropy or the effect of damage mechanisms. In this study, both experimental and numerical studies were conducted to address these issues and to elucidate the effect of anisotropic mechanical behaviour of cortical bone tissue on penetration of a sharp cutting tool. First, a set of tool-penetration experiments was performed in directions parallel and perpendicular to bone axis. Also, these experiments included bone samples cut from four different cortices to evaluate the effect of spatial variability and material anisotropy on the penetration processes. Distinct deformation and damage mechanisms linked to different microstructure orientations were captured using a micro-lens high-speed camera. Then, a novel hybrid FE model employing a smoothed-particle-hydrodynamic domain embedded into a continuum FE one was developed based on the experimental configuration to characterise the anisotropic deformation and damage behaviour of cortical bone under a penetration process. The results of our study revealed a clear anisotropic material behaviour of the studied cortical bone tissue and the influence of the underlying microstructure. The proposed FE model reflected adequately the experimental results and demonstrated the need for the use of the anisotropic and damage material model to analyse cutting of the cortical-bone tissue.  相似文献   

7.
A novel topology optimization model based on homogenization methods was developed for predicting bone density distribution and anisotropy, assuming the bone structure to be a self-optimizing biological material which maximizes its own structural stiffness. The feasibility and efficiency of this method were tested on a 2D model for a proximal femur under single and multiple loading conditions. The main aim was to compute homogenized optimal designs using an optimal laminated microstructure. The computational results showed that high bone density levels are distributed along the diaphysis and form arching struts within the femoral head. The pattern of bone density distribution and the anisotropic bone behavior predicted by the model in the multiple load case were both in good agreement with the structural architecture and bone density distribution occurring in natural femora. This approach provides a novel means of understanding the remodeling processes involved in fracture repair and the treatment of bone diseases.  相似文献   

8.
A novel topology optimization model based on homogenization methods was developed for predicting bone density distribution and anisotropy, assuming the bone structure to be a self-optimizing biological material which maximizes its own structural stiffness. The feasibility and efficiency of this method were tested on a 2D model for a proximal femur under single and multiple loading conditions. The main aim was to compute homogenized optimal designs using an optimal laminated microstructure. The computational results showed that high bone density levels are distributed along the diaphysis and form arching struts within the femoral head. The pattern of bone density distribution and the anisotropic bone behavior predicted by the model in the multiple load case were both in good agreement with the structural architecture and bone density distribution occurring in natural femora. This approach provides a novel means of understanding the remodeling processes involved in fracture repair and the treatment of bone diseases.  相似文献   

9.
Finite element analyses, with increasing levels of detail and complexity, are becoming effective tools to evaluate the performance of joint replacement prostheses and to predict the behaviour of bone. As a first step towards the study of the complications of shoulder arthroplasty, the aim of this work was the development and validation of a 3D finite element model of an intact scapula for the prediction of the bone remodelling process based on a previously published model that attempts to follow Wolff's law. The boundary conditions applied include full muscle and joint loads taken from a multibody system of the upper limb based on the same subject whose scapula was here analysed. To validate the bone remodelling simulations, qualitative and quantitative comparisons between the predicted and the specimen's bone density distribution were performed. The results showed that the bone remodelling model was able to successfully reproduce the actual bone density distribution of the analysed scapula.  相似文献   

10.
The purpose of the present study was to describe the structural density and geometry of the bone, as well as its sensitivity to the resolution of finite element discretisation. The study introduces a novel way to validate biomechanical model of the bone by experimental modal analysis. The structural density and geometry of the model was obtained from a composite bone. A detailed investigation of the weight dependence of the bone on the mesh resolution was performed to obtain the best match with the real weight of the tested bone. The computational model was compared with the experimental results obtained from the modal analysis. The overall changes of the modal properties and bone weight in the model caused by different mesh resolutions and order of approximation were below 10%, despite the bone was modelled with simple isotropic material properties. The experimental modal analysis shows a great potential to be a robust verification tool of computational biomechanical models because it provides boundary conditions–free results. The sensitivity analysis revealed that the linear approximation of the density field is not suitable for the modelling of the modal response of composite bone.  相似文献   

11.
In this work, a complete internal-external bone-remodelling scheme is presented and implemented into a finite element code. This model uses a combination of an anisotropic internal remodelling model based on a new Continuum "Damage-Repair" theory and an external adaptation approach that follows the idea, early introduced by Mattheck et al., to simulate the growth behaviour of biological systems, known as CAO method. This combined scheme qualitatively resembles most of the main features of the bone adaptive behaviour, like the bone mass distribution (heterogeneity and porosity), the directional internal structure (anisotropy), the alignment of the microstructure with the constitutive principal directions and these with those of the stress tensor when permanently loaded by a unique stress state (Wolff's law). It is also thermodynamically consistent, fulfilling a principle of minimum mechanical dissipation. Finally, the comparison between the predicted results and the ones obtained by different experimental tests allows us to conclude that this model is able of reproducing qualitatively the global behaviour of bone tissue when subjected to external mechanical loads.  相似文献   

12.
Femoral head apparent density distribution predicted from bone stresses   总被引:4,自引:1,他引:3  
A new theory relating bone morphology to applied stress is used to predict the apparent density distribution in the femoral head and neck. Cancellous bone is modeled as a self-optimizing material and cortical bone as a saturated (maximum possible bone density) response to stress in the bone tissue. Three different approaches are implemented relating bone apparent density to: (1) the von Mises stress, (2) the strain energy density in the mineralized tissue and (3) a defined closed effective stress (spherical stress). An iterative nonlinear three-dimensional finite element model is used to predict the apparent density distribution in the femoral head and neck for each of the three approaches. It is shown that the von Mises stress (an open effective stress) cannot accurately predict bone apparent density. It is shown that strain energy density and the defined closed effective stress can predict apparent density and that they give predictions consistent with the observed density pattern in the femoral head and neck.  相似文献   

13.
In this work the maxillary central incisor is numerically analysed with an advance discretization technique – Natural Neighbour Radial Point Interpolation Method (NNRPIM). The NNRPIM permits to organically determine the nodal connectivity, which is essential to construct the interpolation functions. The NNRPIM procedure, based uniquely in the computational nodal mesh discretizing the problem domain, allows to obtain autonomously the required integration mesh, permitting to numerically integrate the differential equations ruling the studied physical phenomenon. A numerical analysis of a tooth structure using a meshless method is presented for the first time. A two-dimensional model of the maxillary central incisor, based on the clinical literature, is established and two distinct analyses are performed. First, a complete elasto-static analysis of the incisor/maxillary structure using the NNRPIM is evaluated and then a non-linear iterative bone tissue remodelling analysis of the maxillary bone, surrounding the central incisive, is performed. The obtained NNRPIM solutions are compared with other numerical methods solutions available in the literature and with clinical cases. The results show that the NNRPIM is a suitable numerical method to analyse numerically dental biomechanics problems.  相似文献   

14.
This work presents a computational model for bone remodelling around cementless stems. The problem is formulated as a material optimisation problem considering the bone and stem surfaces to be in contact. To emphasise the behaviour of the bone/stem interface, the computer model detects the existence of bone ingrowth during the remodelling; consequently, the contact conditions are changed for a better interface simulation. The trabecular bone is modelled as a strictly orthotropic material with equivalent properties computed by homogenisation. The distribution of bone relative density is obtained by the minimisation of a function that considers both the bone structural stiffness and the biological cost associated with metabolic maintenance of bone tissue. The situation of multiple load conditions is considered. The remodelling law, obtained from the necessary conditions for an optimum, is derived analytically from the optimisation problem and solved numerically using a suitable finite element mesh. The formulation is applied to an implanted femur. Results of bone density and ingrowth distribution are obtained for different coating conditions. Bone ingrowth does not occur over the entire coated surfaces. Indeed, we observed regions where separation or high relative displacement occurs that preclude bone ingrowth attachment. This prediction of the model is consistent with clinical observations of bone ingrowth. Thus, this model, which detect bone ingrowth and allow modification of the interface conditions, are useful for analysis of existing stems as well as design optimisation of coating extent and location on such stems.  相似文献   

15.
Abstract

In this work, a complete internal-external bone-remodelling scheme is presented and implemented into a finite element code. This model uses a combination of an anisotropic internal remodelling model based on a new Continuum "Damage-Repair" theory and an external adaptation approach that follows the idea, early introduced by Mattheck et ah, to simulate the growth behaviour of biological systems, known as CAO method. This combined scheme qualitatively resembles most of the main features of the bone adaptive behaviour, like the bone mass distribution (heterogeneity and porosity), the directional internal structure (anisotropy), the alignment of the microstructure with the constitutive principal directions and these with those of the stress tensor when permanently loaded by a unique stress state (WolfFs law). It is also thermodynamically consistent, fulfilling a principle of minimum mechanical dissipation. Finally, the comparison between the predicted results and the ones obtained by different experimental tests allows us to conclude that this model is able of reproducing qualitatively the global behaviour of bone tissue when subjected to external mechanical loads.  相似文献   

16.
A simple and efficient numerical method for predicting the remodelling of adaptive materials and structures under applied loading was presented and implemented within a finite element framework. The model uses the trajectorial architecture theory of optimisation to predict the remodelling of material microstructure and structural organisation under mechanical loading. We used the proposed model to calculate the density distribution of proximal femur in the frontal plane. The loading considered was the hip joint contact forces and muscular forces at the attachment sites of the muscles to the bone. These forces were estimated from a separate finite element calculation using a heterogeneous three-dimensional model of the proximal femur. The density distributions obtained by this procedure has a qualitative similarity with in vivo observations. Solutions displayed the characteristic high-density channels that are evident in the Dual X-ray Absorptiometry scan. There is also evidence of the intramedullary canal, as well as low-density regions in the femoral neck. Several parametric studies were carried out to highlight the advantages of the proposed method, which includes fast convergence and low-computational cost. The potential applications of the proposed method in predicting bone structural remodelling in cancer are also briefly discussed.  相似文献   

17.
This study aimed to predict the distribution of bone trabeculae, as a density change per unit time, around a dental implant based on applying a selected mathematical remodelling model. The apparent bone density change as a function of the mechanical stimulus was the base of the applied remodelling model that describes disuse and overload bone resorption. The simulation was tested in a finite element model of a screw-shaped dental implant in an idealised bone segment. The sensitivity of the simulation to different mechanical parameters was investigated; these included element edge length, boundary conditions, as well as direction and magnitude of the implant loads. The alteration in the mechanical parameters had a significant influence on density distribution and model stability, in particular at the cortical bone region. The remodelling model could succeed to achieve trabeculae-like structure around osseointegrated dental implants. The validation of this model to a real clinical case is required.  相似文献   

18.
19.
In this work, a three-dimensional model for bone remodeling is presented, taking into account the hierarchical structure of bone. The process of bone tissue adaptation is mathematically described with respect to functional demands, both mechanical and biological, to obtain the bone apparent density distribution (at the macroscale) and the trabecular structure (at the microscale). At global scale bone is assumed as a continuum material characterized by equivalent (homogenized) mechanical properties. At local scale a periodic cellular material model approaches bone trabecular anisotropy as well as bone surface area density. For each scale there is a material distribution problem governed by density-based design variables which at the global level can be identified with bone relative density. In order to show the potential of the model, a three-dimensional example of the proximal femur illustrates the distribution of bone apparent density as well as microstructural designs characterizing both anisotropy and bone surface area density. The bone apparent density numerical results show a good agreement with Dual-energy X-ray Absorptiometry (DXA) exams. The material symmetry distributions obtained are comparable to real bone microstructures depending on the local stress field. Furthermore, the compact bone porosity is modeled giving a transversal isotropic behavior close to the experimental data. Since, some computed microstructures have no permeability one concludes that bone tissue arrangement is not a simple stiffness maximization issue but biological factors also play an important role.  相似文献   

20.
During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone–implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these techniques. This study describes the anisotropic biomechanical response of cancellous bone through stress–strain curves of equivalent bulk geometries. A cancellous bone segment, reverse engineered by micro computed tomography, was subjected to uniaxial compression. The material's constitutive law, obtained by nano-indentations, was considered during the simulation of the experimental process. A homodimensionally bulk geometry was employed to determine equivalent properties, resulting in a similar anisotropic response to the trabecular structure. The experimental verification of our model sustained that the obtained stress–strain curves can adequately reflect the post-yield behaviour of the sample. The introduced approach facilitates the consideration of nonlinearity and anisotropy of the tissue, while reducing the geometrical complexity of the model to a minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号