首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近期的研究极大地丰富了亚洲古新世和早始新世哺乳动物群信息,因此有必要对现存亚洲生物年代学和生物地理学框架做出调整。在定量和定性分析的基础上,将生物年代界线与主要的动物群更替事件对应起来,改进了古新世和早始新世亚洲陆相哺乳动物分期年代对比及生物地理学的认识。以往知之甚少的上湖期以原始啮形类和钝脚类为主,其后的浓山期则呈现出亚洲哺乳动物的地方性分异。随着新的基干啮形类以及真正的啮型类的出现,啮形类开始辐射。上湖期-浓山期的界线与北美Torrejonian-Tiffanian界线相当,并且动物群更替很可能是由全球变冷阶段的开始引发的。格沙头期哺乳动物进一步分化,亚洲土著类群急剧减少,以多瘤齿兽类、夜鼩类(nyctitheriids)、克莫土兽类(cimolestids)和食果猴为代表的北美迁入物种开始出现。而在北美,亚洲哺乳动物(包括北柱兽类和原恐角兽类)的第一次入侵发生于Tiffanian-5a期初期,第二次入侵发生于Clarkforkian初期,包含了啮齿类、裂齿类及冠齿兽类。因此格沙头期的开始可与北美Tiffanian-5a的开始相对比。伯姆巴期的开始以偶蹄类、奇蹄类和真灵长类的首次出现为标志,与古新世-始新世界线相当。这些类群在亚洲的出现与它们在北美和欧洲出现于始新世之初的情况类似。与格沙头期初期的动物群扩散不同,伯姆巴期的动物群扩散似乎持续了更长时间,并且也有可能直接发生在亚洲和欧洲之间。  相似文献   

2.
Journal of Mammalian Evolution - Taeniolabis taoensis is an iconic multituberculate mammal of early Paleocene (Puercan 3) age from the Western Interior of North America. Here we report the...  相似文献   

3.
Benthic foraminifers in the size-fraction greater than 0.073 mm were studied in 88 Paleocene to Pleistocene samples from Deep Sea Drilling Project Site 525 (Hole 525A, Walvis Ridge, eastern south Atlantic). Clustering of the samples on the basis of the 86 most abundant foraminifers (in total, 331 taxa were identified) allowed separating two major assemblage zones: the Paleocene to Eocene interval, and the Oligocene to Pleistocene interval. Each of these, in turn, were subdivided into three minor subzones as follows: lower upper Paleocene (approx. 62.4 to 57.8 Ma); upper upper Paleocene (56.6 to 56.2 Ma); lower and middle Eocene (55.3 to 46.8 Ma); upper Oligocene to middle Miocene (25.3 to 16 Ma); middle Miocene to Pliocene (15.7 to 4.2 Ma); and lower Pleistocene (0.4 to 0.02 Ma), with only minor differences with the previous zone. Some very abundant taxa span most of the column studies (Bolivina huneri, Cassidulina subglobosa, Eponides bradyi, E. weddellensis, Gavelinella micra, Oridorsalis umbonatus, etc.). Several of the faunal breaks recorded coincide with conspicuous minima in the specific diversity curve, thus suggesting that the corresponding turnovers signal the final stages of periods of faunal impoverishment. At least one major bottom-water temperature drop (as derived from δ18O data) is synchronous with a decrease in the foraminiferal specific diversity. On the other hand, a specific diversity maximum in the middle Miocene might be associated with a δ13C increase at approx. 16 to 12 Ma. Highest foraminiferal abundances (up to 600–800 individuals per gram of dry sediment) occurred in the late Paleocene and in the early Pleistocene, in coincidence with the lowest diversity figures calculated. The magnitude of the most important faunal turnover recorded, between the middle Eocene and the late Oligocene, is magnified in our data set by the large hiatus which separates the middle Eocene from the upper Oligocene sediments. Considerably smaller overturns occurred within the late Paleocene (in coincidence with changes in the specific diversity, absolute abundance of foraminiferal tests, and δ13C), and in the middle Miocene (in coincidence with a specific diversity maximum and a δ13C excursion). New information on the morphology and the stratigraphic ranges of several species is furnished. For all the taxa recorded the number of occurrences, total number of individuals identified and first and last appearances are listed.  相似文献   

4.
In the understanding of the global faunal turnover during the Paleocene–Eocene transition, an important role has been attributed to the Asian continent, although the Asian fossil record for this period is still incomplete. Here we present a multidisciplinary study of the Subeng section (Inner Mongolia, P.R. China), integrating sedimentological, stratigraphical and diverse palaeontological data, in order to reconstruct the palaeoenvironment and to enhance the understanding of the late Paleocene communities that once thrived on the Mongolian Plateau. The Subeng section starts with the Maastrichtian Iren Dabasu Formation directly covered by the late Paleocene Nomogen Formation. This Nomogen Formation is composed of typical lacustrine deposits at the base, covered by fluvio-lacustrine deposits at the top. Both types of deposits provided rich ostracod and charophyte assemblages, closest to those of the Naran Member, Naran Bulak Formation of Mongolia. Palynomorphs from the lake sediments suggest a local flora at Subeng more wooded and closed than reported from elsewhere in this region. The fluvio-lacustrine deposits of the Nomogen Formation have yielded a vertebrate fauna especially rich in mammals. The mammal fauna from Subeng is close to that from Bayan Ulan and typical for the Gashatan Asian Land Mammal Age. The presence of reworked pedogenic carbonate nodules and mud aggregates suggests an at least seasonally dry regional climate. Combined sedimentological and palaeontological data suggest the late Paleocene Nomogen Formation at Subeng was an isolated woodland in a fluvio-lacustrine environment, representing a locally humid environment on the semi-arid Mongolian Plateau. The mammal fauna reflects these differences and shows a number of relatives to mammals from the more humid northeastern Chinese biotic province as well as some North American immigrants.  相似文献   

5.
Five new species of marsupials are described from the middle Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula. Three are derorhynchid didelphimorphians; one species is a prepidolopid polydolopimorphian, and the last is a microbiotheriid australidelphian. Additionally, fragmentary specimens representing an indetermined derorhynchid and a possible marsupial are also described. The prepidolopid and one of the derorhynchids are sufficiently derived as to preclude any close relationship to other members of that family, but the remaining taxa show the closest affinity with species otherwise known only from Itaboraian and older faunas in Patagonia. This differs from the affinity to early Eocene (Casamayoran) taxa shown by the polydolopid marsupials and placental mammals previously known from the La Meseta Formation. The newly described marsupials indicate that the relict La Meseta Fauna is composed of forms that must have dispersed to Antarctica no later than about early late Paleocene, whereas the previously known taxa apparently arrived in the early Eocene. Ecologically, the La Meseta Fauna is composed mostly of small-sized marsupials of likely insectivorous to frugivorous habits and larger-sized placental herbivores. Whereas the ratite bird of the La Meseta Fauna was probably also herbivorous, the phorusrhachoid and falconid birds comprised a large and smaller carnivorous to possibly scavenging component, respectively. Compared to contemporary faunas of Patagonia, the medium- to large-sized marsupial carnivores are lacking in the Antarctic Peninsula. Nevertheless, the La Meseta Fauna is Patagonian in origin and affinity. In conjunction with new faunas of Itaboraian age (early late Paleocene) in Patagonia, the evidence available indicates that from at least Itaboraian time onward the land mammal fauna of Patagonia and northern South America, as well, is a self-contained unit, developing the diversity characteristic of the Paleogene in that continent, including the australidelphian (but South American) microbiotheres. This, in combination with the apparent separation of Australia from Antarctica at ca. 64 Ma, reinforces interpretations that the precursors of the Australian marsupial fauna most likely dispersed from South America to Australia in the late Cretaceous–early Paleocene.  相似文献   

6.
Abstract: Early Eocene mammal faunas of North America were transformed by intercontinental dispersal at the Paleocene–Eocene boundary, but lizard faunas from the earliest Eocene of the same area were dominated by immigrants from within the continent. A new lizard assemblage from the middle early Eocene of Wyoming sheds light on the longer‐term history of dispersal in relation to climate change. The assemblage consists of three iguanid species (including two new species possibly closely related to living Anolis), Scincoideus, ‘Palaeoxantusia’, four anguids, two species of an undescribed new anguimorph clade, Provaranosaurus and a varanoid (cf. Saniwa). Most North American glyptosaurin glyptosaurines are now referred to Glyptosaurus, and Glyptosaurus hillsi is given a new diagnosis. Scincoideus is otherwise known only from the mid‐Paleocene of Belgium, and the specimens described here are the first to document intercontinental dispersal to North America among lizards in the early Eocene. Like in mammals, some immigrant lizard lineages first appearing in the Bighorn Basin in the earliest Eocene persisted in the area long after the Paleocene–Eocene thermal maximum, but other immigrants appear to have been restricted to the Paleocene–Eocene thermal maximum.  相似文献   

7.
An appraisal of Paleogene floral and land mammal faunal dynamics in South America suggests that both biotic elements responded at rate and extent generally comparable to that portrayed by the global climate pattern of the interval. A major difference in the South American record is the initial as well as subsequent much greater diversity of both Neotropical and Austral floras relative to North American counterparts. Conversely, the concurrent mammal faunas in South America did not match, much less exceed, the diversity seen to the north. It appears unlikely that this difference is solely due to the virtual absence of immigrants subsequent to the initial dispersal of mammals to South America, and cannot be explained solely by the different collecting histories of the two regions. Possible roles played by non-mammalian vertebrates in niche exploitation remain to be explored. The Paleogene floras of Patagonia and Chile show a climatic pattern that approximates that of North America, with an increase in both Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) from the Paleocene into the Early Eocene Climatic Optimum (EECO), although the Paleocene-Eocene Thermal Maximum (PETM) is not recognized in the available data set. Post-EECO temperatures declined in both regions, but more so in the north than the south, which also retained a higher rate of precipitation. The South American Paleogene mammal faunas developed gradual, but distinct, changes in composition and diversity as the EECO was approached, but actually declined somewhat during its peak, contrary to the record in North America. At about 40 Ma, a post-EECO decline was recovered in both hemispheres, but the South American record achieved its greatest diversity then, rather than at the peak of the EECO as in the north. This post-EECO faunal turnover apparently was a response to the changing conditions when global climate was deteriorating toward the Oligocene. Under the progressively more temperate to seasonally arid conditions in South America, this turnover reflected a major change from the more archaic, and more tropical to subtropical-adapted mammals, to the beginning of the ultimately modern South American fauna, achieved completely by the Eocene-Oligocene transition. Interestingly, hypsodonty was achieved by South American cursorial mammals about 15–20 m.y. earlier than in North America. In addition to being composed of essentially different groups of mammals, those of the South American continent seem to have responded to the climatic changes associated with the ECCO and subsequent conditions in a pattern that was initially comparable to, but subsequently different from, their North American counterparts.  相似文献   

8.
Ostracode faunas obtained from nine sections spanning the Paleocene-Early Eocene interval from a platform-basin transect in the Southern Galala Plateau area (Eastern Desert, Egypt) have been investigated. The study focuses on taxonomy and biostratigraphy of the ostracode assemblages across the P/E boundary, with supporting comments on paleoecology and paleobiogeography. The studied nine sections yielded 60 taxa belonging to 39 genera. Five species are new. The P/E transition is characterized by the appearance of new taxa rather than extinctions. During the Early and early Late Paleocene, the ostracode assemblages throughout the study area are largely similar, being dominated by middle-outer neritic taxa. In the late Late Paleocene and Early Eocene, changes in the paleobathymetry from deeper marine environments in the distal area in the south to shallower marine environments in the proximal area in the north become pronounced. Many of the recorded taxa have a wide geographic distribution throughout the Middle East and North Africa. Similarities with basins of West Africa are also found, reflecting faunal exchanges between this area and southern Tethys during the Paleocene and Early Eocene.  相似文献   

9.
The localities Dalum and Osteroden near Fürstenau (Lower Saxony, NW-Germany) represent the northern-most occurrences of Palaeogene mammals in Europe.Eurohippus parvulus messelensis at Dalum indicates mammal zone MP 11, hence lower Geiseltalian (middle Eocene), instead of MP 10, ?Cuisian“ (= Grauvian, early Eocene) asTobien (1986) assumed. The same holds true for an upper molar from Balegem (Belgium), whileArctocyon primaevus as well asA. matthesi from Dalum andA. matthesi from Osteroden are evidently reworked from the late Paleocene.  相似文献   

10.
Global change during the late Pliocene was manifested in declining temperatures, increased amplitude of climate cycles, and shifts in the periodicity of orbital climate forcing. Linking these changes to the evolution of African continental faunas and to hominin evolution requires well-documented fossil evidence that can be examined through substantial periods of time. The Omo sequence of southern Ethiopia provides such a database, and we use it to analyze change in the abundances of mammal taxa at different levels of temporal and taxonomic resolution between 4 and 2 Ma. This study provides new evidence for shifts through time in the ecological dominance of suids, cercopithecids, and bovids, and for a trend from more forested to more open woodland habitats. Superimposed on these long-term trends are two episodes of faunal change, one involving a marked shift in the abundances of different taxa at about 2.8+/-0.1 Ma, and the second the transition at 2.5 Ma from a 200-ka interval of faunal stability to marked variability over intervals of about 100 ka. The first appearance of Homo, the earliest artefacts, and the extinction of non-robust Australopithecus in the Omo sequence coincide in time with the beginning of this period of high variability. We conclude that climate change caused significant shifts in vegetation in the Omo paleo-ecosystem and is a plausible explanation for the gradual ecological change from forest to open woodland between 3.4 and 2.0 Ma, the faunal shift at 2.8 +/-0.1 Ma, and the change in the tempo of faunal variability of 2.5 Ma. Climate forcing in the late Pliocene is more clearly indicated by population shifts within the Omo mammal community than by marked turnover at the species level.  相似文献   

11.
Cenozoic mammal evolution and faunal turnover are considered to have been influenced and triggered by global climate change. Teeth of large terrestrial ungulates are reliable proxies to trace long‐term climatic changes due to their morphological and physicochemical properties; however, the role of premolar molarization in ungulate evolution and related climatic change has rarely been investigated. Recently, three patterns of premolar molarization among perissodactyls have been recognized: endoprotocrista‐derived hypocone (type I); paraconule–protocone separation (type II); and metaconule‐derived pseudohypocone (type III). These three patterns of premolar molarization play an important role in perissodactyl diversity coupled with global climate change during the Cenozoic in Asia. Those groups with a relatively higher degree of premolar molarization, initiated by the formation of the hypocone, survived into Neogene, whereas those with a lesser degree of molarization, initiated by the deformation of existing ridges and cusps, went extinct by the end of the Oligocene. In addition, the hypothesis of the “Ulan Gochu Decline” is proposed here to designate the most conspicuous decrease of perissodactyl diversity that occurred in the latest middle Eocene rather than at the Eocene–Oligocene transition in Asia, as conventionally thought; this event was likely comparable to the contemporaneous post‐Uintan decline of the North American land fauna.  相似文献   

12.
A nearly complete turtle shell from the Late Cretaceous (Maastrichtian) Hell Creek Formation of Slope County, North Dakota, represents the most complete remains to date of a Mesozoic kinosternoid turtle and a new species, Hoplochelys clark nov. sp. The new taxon is diagnosable from other representatives of Hoplochelys by the plesiomorphic placement of the humeral/femoral sulcus behind the hyo/hypoplastral suture and the autapomorphic development of an interrupted median (neural) keel. All six previously named Paleocene (Puercan and Torrejonian) representatives of Hoplochelys lack diagnostic characters and are synonymized as Hoplochelys crassa. A phylogenetic analysis reveals that Hoplochelys spp. and Agomphus pectoralis are most parsimoniously placed within Kinosternoidea along the phylogenetic stem of the extant Mesoamerican River Turtle Dermatemys mawii, extending that taxon’s stem lineage from the early Eocene to the late Maastrichtian. The two primary crown lineages of Kinosternoidea are thus known from the Mesozoic and split prior to the late Campanian. The presence of a thickened cruciform plastron, true costiform processes, only three inframarginals, and the reduction of the medial contact of the abdominals are synapomorphies of Chelydroidea, the clade formed by Chelydridae and Kinosternoidae.  相似文献   

13.
Afzal, J., Williams, M., Leng, M.J., Aldridge, R.J. & Stephenson, M.H. 2011: Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia, Vol. 44, pp. 299–320. The Paleocene–Early Eocene carbonate successions of the Indus Basin in Pakistan formed on the northwestern continental shelf margin of the Indian Plate in the eastern Tethys Ocean. Based on larger benthic foraminifera (LBF), eight Tethyan foraminiferal biozones (SBZ1–SBZ8) spanning the Paleocene to Early Eocene interval are identified. The base of the Eocene is identified by the first appearance of Alveolina sp. Other stratigraphically important LBFs that are characteristic of the earliest Eocene are Ranikothalia nuttalli, Discocyclina dispansa and Assilina dandotica. Stable isotope analysis through the Paleocene–Eocene (P–E) boundary interval identifies more positive δ13C values for the Late Paleocene (+3.4‰ to +3.0‰) and lower values (+2.7‰ to +1.6‰) for the earliest Eocene. However, there is insufficient sampling resolution to identify the maximum negative δ13C excursion of the Paleocene–Eocene Thermal Maximum. During Late Paleocene times LBF assemblages in the Indus Basin were taxonomically close to those of west Tethys, facilitating biostratigraphic correlation. However, this faunal continuity is lost at the P–E boundary and the earliest Eocene succession lacks typical west Tethys Nummulites, while Alveolina are rare; LBFs such as Miscellanea and Ranikothalia continue to dominate in the Indus Basin. The absence of Nummulites from the earliest Eocene of Pakistan and rarity of Alveolina, elsewhere used as the prime marker for the base of the Eocene, may imply biogeographical barriers between east and west Tethys, perhaps caused by the initial stages of India‐Asia collision. Later, at the level of the Eocene SBZ8 Biozone, faunal links were re‐established and many foraminifera with west Tethys affinities appeared in east Tethys, suggesting the barriers to migration ceased. □Biostratigraphy, Eocene, India‐Asia collision, larger benthic foraminifera, palaeoecology, Paleocene.  相似文献   

14.
For lacking of absolute dating, and because of the strong mammalian faunal endemism, the Chinese late Neogene has long been subdivided into mammalian ages mostly based on isolated local faunas by evolutionary stages of fossil taxa. The correlation with European stages and or mammalian units remains unsatisfied. We report the recent advances of the land mammal biochronology of late Neogene based on fossils found from continuous sections located at Lantian, Shaanxi Province and Lingtai, Gansu Province. There recognized three biozones for the late Miocene by fossils from the Bahe and Lantian formations, and three biozones for Pliocene on the data from Lingtai. The detailed biochronology work in combination with paleomagnetic data may improve the precision of correlation in the continental scale.  相似文献   

15.
记述了发现于内蒙古苏崩晚古新世格沙头期的中兽类软食中兽Hapalodectes属的一个新种。这是软食中兽在中国古新世地层中的首次发现,也是亚洲格沙头期的第二种软食中兽。已有的系统学和生物地层学证据支持软食中兽属和软食中兽科(Hapalodectidae)亚洲起源的观点。软食中兽显然是在古新世-始新世极热事件(PETM)期间通过白令陆桥扩散到北美大陆的,因而符合"东方伊甸园"学说中的生物地理格局。软食中兽有限的(即非欧洲的)地理分布使得我们可以重建该属生物地理学历史。如同软食中兽一样的"东方伊甸园"式的扩散模式,可以看作是大的环境变化事件导致多个支系产生相似的系统学和生物地理学分布格局的生物地理扩散机制。严格地检查了所谓的在古新世-始新世界线上或其附近的与"东方伊甸园"模式相矛盾的大陆间哺乳动物扩散事例,结果发现这些例子都是不可靠的。"东方伊甸园"生物地理学说充分解释了PETM时期哺乳动物群更替以及劳亚古陆哺乳动物地理分布格局的成因。  相似文献   

16.
《Comptes Rendus Palevol》2016,15(7):791-812
The land mammal record of the Vallès-Penedès Basin (Catalonia, NE Spain) ranges from the early Miocene (Ramblian) to the late Miocene (Turolian), that is from about 20 to 7 Ma. Here we present an updated review of the mammal succession focusing on biochronology as well as on environmental and faunal changes. Based on faunal similarities with central Europe, we interpret this basin as a transitional zone between the forested environments of northern regions and the more arid landscapes of the inner Iberian Peninsula. The quality of the Vallès-Penedès record and its chronostratigraphic control is clearly better for the late Aragonian and the Vallesian (between 12.6–9.0 Ma), especially for small mammals. Therefore, we analyze small mammal diversity dynamics during this interval. Contrary to previous analyses, which found an abrupt extinction event coinciding with the early/late Vallesian boundary (the Vallesian Crisis), our results show that this pattern is due to uneven sampling. Instead, taxonomic richness slowly decreased since the late Vallesian as a result of a series of extinctions that mostly affected forest-dwelling taxa.  相似文献   

17.
A review of paleontological, phyletic, geophysical, and climatic evidence leads to a new scenario of land mammal dispersal among South America, Antarctica, and Australia in the Late Cretaceous to early Tertiary epochs. New fossil land vertebrate material has been recovered from all three continents in recent years. As regards Gondwana, the present evidence suggests that monotreme mammals and ratite birds are of Mesozoic origin, based on both geochronological and phyletic grounds. The occurrence of monotremes in the early Paleocene (ca. 62 Ma) faunas of Patagonia and of ratites in late Eocene (ca. 41-37 m.y.) faunas of Seymour Island (Antarctic Peninsula) probably is an artifact of a much older and widespread Gondwana distribution prior to the Late Cretaceous Epoch. Except for South American microbiotheres being australidelphians, marsupial faunas of South America and Australia still are fundamentally disjunct. New material from Seymour Island (Microbiotheriidae) indicates the presence there of a derived taxon that resides in a group that is the sister taxon of most Australian marsupials. There is no compelling evidence that dispersal between Antarctica and Australia was as recent as ca. 41 Ma or later. In fact, the derived marsupial and placental land mammal fauna of Seymour Island shows its greatest affinity with Patagonian forms of Casamayoran age (ca. 51–54 m.y.). This suggests an earlier dispersal of more plesiomorphic marsupials from Patagonia to Australia via Antarctica, and vicariant disjunction subsequently. This is consistent with geophysical evidence that the South Tasman Rise was submerged by 64 Ma and with geological evidence that a shallow water marine barrier was present from then onward. The scenario above is consistent with molecular evidence suggesting that australidelphian bandicoots, dasyurids, and diprotodontians were distinct and present in Australia at least as early as the 63-Ma-old australidelphian microbiotheres and the ancient but not basal australidelphian,Andinodelphys, in the Tiupampa Fauna of Bolivia. Land mammal dispersal to Australia typically has been considered to be at a low level of probability (e.g., by sweepstakes dispersal). This study suggests that the marsupial colonizers of Australia included already recognizable members of the Peramelina, Dasyuromorphia, and Diprotodontia, at least, and entered via a filter route rather than by a sweepstakes dispersal.To whom correspondence should be addressed.  相似文献   

18.
Species ranges and relative abundances of dominant planktonic foraminifers of eight late Eocene to early Oligocene deep-sea sections are discussed to determine the nature and magnitude of extinctions and to investigate a possible cause-effect relationship between impact events and mass extinctions.Late Eocene extinctions are neither catastrophic nor mass extinctions, but occur stepwise over a period of about 1–2 million years. Four stepwise extinctions are identified at the middle/late Eocene boundary, the upperGlobigerapsis semiinvoluta zone, theG. semiinvoluta/Globorotalia cerroazulensis zone boundary and at the Eocene/Oligocene boundary. Each stepwise extinction event represents a time of accelerated faunal turnover characterized by generally less than 15% species extinct and in itself is not a significant extinction event. Relative species abundance changes at each stepwise extinction event, however, indicate a turnover involving > 60% of the population implying major environmental changes.There microtektite horizons are present in late Eocene sediments; one in the upperG. semiinvoluta zone (38.2 Ma) and two closely spaced layers only a few thousand years apart in the lower part of theGloborotalia cerroazulensis zone (37.2 Ma). Each of the three impact events appears to have had some effect on microplankton communities. However, the overriding factor that led to the stepwise mass extinctions may have been the result of multiple causes as there is no evidence of impacts associated with the step preceding, or the step following the deposition of the presently known microtektite horizons.  相似文献   

19.
Foraminiferal and clay mineral records were studied in the upper Paleocene to lower Eocene Dababiya section (Egypt). This section hosts the GSSP for the Paleocene/Eocene boundary and as such provides an expanded and relatively continuous record across the Paleocene/Eocene Thermal Maximum (PETM). Deposition of illite–smectite clay minerals is interpreted as a result of warm and arid conditions in the southern Tethys during the latest Paleocene. Benthic foraminiferal assemblages are indicative of seasonal variation of oxygen and food levels at the seafloor. A sea-level fall occurred in the latest Paleocene, followed by a rise in the earliest Eocene. Foraminiferal diversity and densities decreased strongly at the P/E boundary, coinciding with the level of global extinction of benthic foraminifera (BEE) and start of the Carbon Isotope Excursion (CIE) and PETM. In the lower CIE, the seafloor of the stratified basin remained (nearly) permanently anoxic and azoic. A sudden increase in mixed clay minerals (kaolinite and others) suggests that warm and perennial humid conditions prevailed on the continent. High levels of TOC and phosphathic concretions in the middle CIE are evidence for increased organic fluxes to the sea floor, related to upwelling and to augmented continental runoff. Low densities of opportunistic taxa appeared, indicating occasional ephemeral oxygenation and repopulation of the benthic environment. The planktic community diversified, although conditions remained poor for deep-dwelling taxa. An increase in illite–smectite dominated clay association is considered to mark the return of a seasonal signature on climatic conditions. During the late CIE environmental conditions changed to seasonally fluctuating mesotrophic conditions and diverse and rich benthic and planktic foraminiferal communities developed. Post-CIE planktic faunas consisted of both deep and shallow-dwelling taxa and buliminid-dominated benthic assemblages reflect fluctuating mesotrophic conditions.The frequent environmental perturbations during the CIE/PETM at Dababiya provided a rather specialized group of foraminiferal taxa (i.e., Anomalinoides aegyptiacus) the opportunity to repopulate, survive and subsequently dominate by a hypothesized capacity to switch to an alternative life strategy (population dynamics, habitat shift) or different metabolic pathway. The faunal record of Dababiya provides insight into the cause and development of the BEE: various severe global changes during the PETM (e.g., ocean circulation, CaCO3-dissolution, productivity and temperature changes) disturbed a wide range of environments on a geologically brief timescale, explaining together the geographically and temporally variable character of the BEE. This allowed a number of specific but different foraminiferal assemblages composed of stress-tolerant and opportunistic taxa to be successful during and after the periods of environmental perturbations associated with the PETM.  相似文献   

20.
中国新近纪哺乳动物生物年代学   总被引:20,自引:7,他引:13  
基于迄今为止发现的包括大型和小型哺乳动物在内的动物群资料,中国的新近纪被划分为7个哺乳动物期和13个哺乳动物群单位(NMU)。现在,通过对大量新化石地点和新化石记录的研究,中国的新近纪NMU已经得到显著的充实。这些新资料的重要意义在于极大地促进了我们对动物群转换和分期界线标定的认识。最近几年来,中国的新近纪哺乳动物分期变得更加精细,这主要得益于古地磁地层学的广泛应用,使得这些分期之间的界线能够进行准确的校正和定年。越来越多的古地磁分析资料使中国的新近纪哺乳动物群在与欧洲的动物群进行对比时有了一个良好的标尺。因此,本文主要依据哺乳动物化石和古地磁测年数据在中国的新近纪哺乳动物群单位和欧洲的新近纪哺乳动物分带(MN)之间进行对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号