首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
Aim To use pollen data, numerical analysis and modelling to reconstruct late Quaternary vegetation and climate in a complex, mountainous environment. Location Georgia (Caucasus region). Methods Pollen data were assembled from various sources and used to map: (1) changing frequencies of individual taxa; (2) vegetation changes; and (3) reconstructed climatic parameters for the past 14,000 years. Numerical analyses were performed using two‐way indicator species analysis (twinspan ), detrended correspondence analysis (DCA), the modern analogue technique (MAT) and weighted averaging (WA). Results Mapping of pollen taxa showed that Chenopodiaceae, Artemisia and Ephedra were most abundant in the study area during the late‐glacial. Betula and Corylus expanded during the early Holocene, yielding to Abies, Carpinus, Fagus, Quercus and Castanea. Picea, Pinus, Juglans and Ostrya‐type expanded during the late Holocene. Mixed forests grew in the moist, Black Sea refugium throughout the late Quaternary. Elsewhere in Georgia, the Pleistocene–Holocene transition is recorded as a shift from desert‐steppes to oak‐xerophyte communities and mixed forests. This kind of vegetation remained relatively stable until the mid–late Holocene, when coniferous forests and mountain grasslands advanced. DCA showed that rainfall was most strongly correlated with pollen composition in the study area (r2 = 0.55). No temperature signal was detected. A weighted‐averaging transfer function linking pollen percentages to annual precipitation was selected over a MAT model as it performed better when applied to a validation data set. Rainfall reconstructions indicate widespread aridity at the terminal Pleistocene, followed by a gradual increase in precipitation, peaking during the mid Holocene (7000–4000 cal. yr bp ) and generally decreasing thereafter. Main conclusions On a regional scale, the results confirm those from previous studies of palaeovegetation and palaeoclimate in Western Asia. On a local scale, reconstructions from individual sites often diverge from the regional trend because of edaphic changes, ecological succession, human impacts and other disturbances. Some of these factors are probably responsible for the increasing heterogeneity of Georgia’s vegetation in the latter half of the Holocene.  相似文献   

2.
We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from different plant taxa prominent in the Thessaloniki area for a 4-year period (1996–1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, Corylus spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).  相似文献   

3.
New pollen results and radiocarbon dating from a valley mire in south-western Spain are presented. This is a region where few palaeoecological records have been preserved and the sequence yields important new palaeobotanical evidence for the late Holocene. The landscape is shown as having been largely open woodland, but more wooded than at present. The vegetation history of the last four millennia in these montane territories of south-western Iberia is discussed in the light of anthropogenic indicators, archaeological and documentary archives; fire incidence and climate change. Alnus is the predominant pollen type, although a decline is noted during the last couple of centuries. Its presence is connected with local topography behaving as a phreatophyte, that is, a plant which obtains a significant amount of water from the zone of saturated soil. A framework is also provided for the age and ecological dynamics of some major woodland taxa—Betula, Corylus, Ilex, evergreen and deciduous oaks, Ericaceae and Pinus. In addition, the natural status of several pollen taxa and local trends in biodiversity are discussed. We consider that the results of our work will have important implications for the understanding of the vegetation history in a floristically very rich area, with a noticeable diversity of woody taxa, and a relatively well preserved ecosystem structure.  相似文献   

4.
Modern pollen samples from alpine vegetation on the Tibetan Plateau   总被引:6,自引:0,他引:6  
  • 1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types.
  • 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust‐trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust‐trap samples contain much higher percentages of tree pollen than non‐dust‐trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust‐trap samples by long‐distance transport of exotic pollen is a serious problem.
  • 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non‐arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non‐forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture‐bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources.
  • 4 The different types of non‐forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non‐forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types.
  • 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non‐forested areas.
  相似文献   

5.
Qinghai‐Tibetan Plateau is one of the most sensitive areas to climate change of the earth, owing to its unique topographic features and ecosystem. Soil pollen analysis is an important component of palaeo‐ecological research, while pollen preservation and the relationship between pollen and vegetation can influence the correct interpretation of fossil pollen spectra. In this paper, 36 pollen samples, which come from four meadows and two forest soil pollen profiles, have been analyzed to determine relationships between pollen and vegetation and pollen preservation on the northeastern Qinghai‐Tibetan Plateau. The relationship between pollen and vegetation shows that the surface pollen assemblages can represent regional vegetation characteristics moderately, while Betula and Populus pollen is absent in the soil surface for Betula and Populus mixed forest. Artemisia, Chenopodiaceae, Ephedra, Pinus, Hippophae etc. are over‐represented pollen taxa, Leguminosae, Ranunculaceae, Rosaceae, Gramineae etc. are under‐represented pollen taxa. The study of pollen preservation indicates that pollen concentrations decrease with the increase of soil depths, more pollen taxa are present in surface soils than in deep levels, and more than 75% pollen grains will be lost from the surface soils to deep levels. Pollen sorting preservation function should be noticed. Artemisia and Chenopodiaceae can be preserved well and have higher pollen percentages in deeper levels. Cyperaceae and Populus are preserved worse, Populus pollen is absent and Cyperaceae has higher pollen percentages in the surface soil than in the deep levels. The high soil pH values are the most destructive factors for pollen preservation on the northeastern Qinghai‐Tibetan Plateau. Pollen concentrations decrease sharply when the soil pH values are over 7.6. Downward leaching of pollen is unimportant in this study.  相似文献   

6.
Hanna Ranta  Pinja Satri 《Grana》2013,52(4):274-284
Many anemophilous, early‐flowering tree genera include allergy plants of world‐wide significance. We studied the synchronisation of high and low pollen years in the genera Betula, Alnus, Corylus, Salix and Populus and the cumulative effects that an increasing number of taxa has on the number of days of exposure to different levels of allergenic pollen in North Europe. The proximal causes of the inter‐annual variations of airborne pollen loads were analysed with a multiple regression analysis. The annual fluctuations of airborne pollen sums were compared between genera and found to be positively correlated among all combinations of genera at the three study sites. Most correlations were statistically significant (p<0.05). The comparison between Betula and Alnus is discussed first. Betula pollen was clearly the most abundant airborne pollen type. The presence of Alnus pollen, however, significantly increased the predisposal to allergenic pollen. At all sites, the number of days per year when the Betula and Alnus pollen counts together exceeded 10 and 100?grains m?3 of air, was found to be greater than the number of days when the Betula pollen counts alone exceeded 10 and 100?m?3 of air. The difference was statistically significant. In Kuopio, the difference was found to be statistically significant even for grains per 1?000?m?3 of air of Betula and Alnus together compared with the same count of Betula pollen alone. Betula, Alnus and Corylus belong to the order Fagales and have cross‐reacting main allergens. The flowering of Alder and Corylus culminate at the same time, two to four weeks earlier than that of Betula. Due to synchronization of high and low years and the mostly non‐overlapping flowering seasons, the time of exposure to pollen may be very long during the high years. Furthermore, Alnus and Corylus pollen may prime allergic people before the onset of the Betula season.  相似文献   

7.
Two new14C-dated Holocene pollen profiles from Marais des Baux, Bouches-du-Rhône, France, are presented. The record begins in the Younger Dryas, when the vegetation consisted mainly of grasses and mugwort (Artemisia). The Preboreal was marked by a transitory expansion of pine forests and was followed by the establishment of a rich deciduous oak-forest that included hazel (Corylus) and elm (Ulmus). During the Boreal, hazel played a dominant role within the oak-forest. The oak forests, which includedQuercus ilex, achieved a major expansion during the Atlantic period. The Subboreal was characterised by the regional establishment of, firstly, fir (Abies) and then beech (Fagus). The spread and expansion of beech coincides with the first clear evidence for farming. Agricultural activities brought about the decline of deciduous oak-forest. During the Subatlantic, forests in the vicinity of Marais des Baux were cleared for farming. Cereal growing, which included rye cultivation, was of considerable importance. Three noteworthy characteristics that serve to differentiate the Holocene vegetation history of the low-lying Provence region from other French regions are as follows: 1) the early establishment (from the onset of Preboreal) of low altitude mixed forest; 2) the expansion during the Subboreal of fir and beech in low altitude areas with a Mediterranean climate and, 3) the exceptional taxonomic richness of the pollen assemblages (120 identified taxa) and the presence of borealalpine and Euro-Siberian taxa that no longer exist in Lower Provence.  相似文献   

8.
Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north–south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single‐tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site‐specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition.  相似文献   

9.
The objective of this study was to analyse the dynamics of the Alnus and Corylus pollen seasons in Poland with reference to spatial and seasonal differentiation. Aerobiological monitoring was performed in 10 cities, in 1994–2007. Five characteristics defining the pollen season were considered: 1. beginning and end dates of the season phases (5, 25, 50, 75, 95% of annual totals), 2. pollen season duration (90% method), 3. skewness and 4. kurtosis of airborne pollen curves, and 5. annual pollen totals. The beginning of the Corylus pollen season in Warsaw started on the 53rd day of a year. The Alnus pollen season started 9.5 days (SE = 1.4) later. The start of the season for both taxa was delayed by 3.3 (SE = 0.5) days for each 100 km towards the east. The Corylus pollen season lasted about 15 days longer than the Alnus season. Season duration for both taxa decreased towards the east by 3.5 days (SE = 0.7) and towards the north by 1.3 days (SE = 0.6) for each 100 km. Seasonal dynamics of both taxa are skewed to the right. In cities located west of Warsaw the dynamics are more skewed (except at Szczecin, Wroclaw). Asymmetry decreases towards the east by 0.16/100 km. Almost all kurtosis values of pollen-season dynamics were positive and higher for Alnus. Kurtosis values for both taxa increase together with delay of the pollen season beginning by 4% per day (p < 0.0001). Mean pollen total increases: for Corylus mainly towards the north (by 64%/100 km), for Alnus mainly towards the west (by 15%/100 km). Geographical location (longitude and latitude) determines: the start and duration of the pollen season, skewness of the pollen curve, and annual totals.  相似文献   

10.
The aim of this study was to construct a picture of the influence of meteorological conditions on the start and duration of the airborne Betulaceae pollen season and the pollen concentrations in the atmosphere of Zagreb, Croatia. The study during three seasons (2002–2004) used a 7‐day Hirst‐type volumetric pollen and spore trap. Total annual airborne pollen of Alnus, Corylus and Betula greatly varied from year to year. The differences in the dates of onset of airborne pollen presence of Alnus, Corylus and Betula noted in Zagreb in 2002–2004 were controlled by weather conditions, particularly temperature and precipitation. In all years studied, airborne pollen peaks were recorded on days with temperature above 0°C and without or minimal precipitation. The mean number of days with airborne pollen concentrations exceeding levels which provoke symptoms of an allergic reaction was 15, 16 and 29 days for alder, hazel and birch, respectively. The results of the present study may provide useful data for allergologists to reach accurate diagnoses, and timely information on concentrations of airborne pollen types and concentrations for individuals with pollen hypersensitivity.  相似文献   

11.
Summary A comparative study was carried out between aeroallergenic pollen spectra in Trieste and at Lozzo di Cadore. The two localities were found to be different on a five-day running mean basis as to the 8 pollen taxa monitored by the National Aerobiological Monitoring Network managed by the Italian Association of Aerobiology (AIA). In the zone of Lozzo the pollination curve of the spring flowering taxa showed a lag of about one month due to the colder climate. Lozzo di Cadore showed a poor airborne pollen content,Corylus and Graminaceae being prevailing. Trieste has a higher airborne pollen diversity and longer pollination times because of its higher floristic and vegetational complexity. In Trieste the allergenic pollen spectrum showed great quantities ofOstrya, Quercus, Oleaceae, Graminaceae and of ruderal taxa, widespread over the area, due to man's influence.  相似文献   

12.
Aim To obtain palaeobotanical evidence enabling evaluation of the viability of the hypothesis that the ‘oriental’ element of the Balkan flora reached south‐east Europe from Turkey prior to the Holocene, probably via the Thracian Plain during a late Quaternary glacial stage but no later than the late Weichselian. Location Ezero wetland, northern Thracian Plain, Bulgaria. Methods We undertook analyses of pollen and microspores, plant macrofossils, wood fragments and molluscs recovered from sediments deposited in the Ezero wetland during the late Weichselian and Weichselian late‐glacial. Sediment chronology was determined using radiocarbon age estimates. Results Six metres of sediments were recovered from the basin, of which the lower 3 m, extending from c. 15,450 cal yr bp to the early Allerød, was analysed. A major hiatus occurred after c. 13,900 cal yr bp , the overlying sediments being of late Holocene age. Palaeobotanical evidence indicates predominantly open vegetation during the Weichselian late‐glacial, although macrofossil remains of woody taxa demonstrate the local presence of patches of wooded steppe and gallery forest. Changes in the composition of the steppe vegetation, and in the nature of the sediments deposited in the basin, indicate changes in climatic conditions, especially in the hydrological regime and in the moisture available to vegetation. After an initially relatively moister phase, the final centuries of the late Weichselian were drier, as was a short interval that may correlate with the Older Dryas. Moister conditions characterize intervals corresponding to the Bølling and Allerød sub‐units of the Weichselian late‐glacial interstadial. Although the pollen evidence is thus consistent with that from previous studies of this period in south‐east Europe and south‐west Asia, indicating predominantly open steppe vegetation, the macrofossil evidence indicates the persistent local presence of woody taxa. The woody taxa recorded include Celtis tournefortii‐type and Juniperus cf. J. excelsa, two taxa today characteristic of the wooded steppes of Anatolia and members of the ‘oriental’ element of the southern Balkan flora, as well as Rosaceae Subfams. Maloideae and Prunoideae, Alnus and Fraxinus. Main conclusions The late Weichselian vegetation of the northern Thracian Plain included patches of wooded steppe that supported members of the ‘oriental’ element of the modern Balkan flora. The presence of such taxa renders viable the hypothesis that they could have reached south‐east Europe from Turkey via the Thracian Plain during glacial times. Such hypotheses in historical biogeography can be evaluated critically using the evidence obtained from plant macrofossil analyses in combination with that from pollen analysis.  相似文献   

13.
Twenty five surface samples/moss cushions were collected for palynological analysis from open areas of Reasi District, Jammu and Kashmir (India). These samples were used to investigate the relationships between extant vegetation and modern pollen spectra, which serve as modern analogue for the reliable ecological interpretation of fossil pollen records. The present vegetation in the region comprises tropical dry deciduous forests and subtropical pine forests with scattered stands of oak. The pollen analysis reveals that Pinus sp. (average 69% in the pollen assemblages), amongst the conifers, dominates the pollen rain, which can be attributed to its high pollen productivity and exceptional pollen dispersal efficiency. Cedrus sp. and Podocarpus sp. pollen contribute with an average of 16 and 5% to the total pollen rain. Other conifers such as Picea sp., Abies sp., Juniperus sp. and Tsuga sp., as well as broad-leaved taxa such as Quercus sp., Alnus sp., Betula sp., Carpinus sp., Corylus sp., Juglans sp., Ulmus sp., Salix sp., Elaeocarpus sp., Mallotus sp. and Aesculus sp., have lower averages of 1 to 4.5% in the total pollen rain which could be either due to their poor pollen dispersal efficiency or to the poor preservation in the samples. Tubuliflorae (average 25%), Poaceae (average 6.26%), Cerealia and other crop plants (average 7.68%) are other prominent taxa in the pollen rain. The nearly complete absence of members of tropical dry deciduous forests in the pollen spectra likely is due to the fact that most species in this vegetation type are not wind pollinated.  相似文献   

14.
During six consecutive years (1993–1998), aBurkard volumetric pollen trap was continuouslyoperated to sample pollen from the air of thecity of Murcia. The aim of the study was toelucidate the spectra of airborne pollen andthe variations during the year, and toelaborate a pollen calendar. This time spanincludes the end of the period with severedrought from 1990–1995, which particularly affected the south-eastern region of Spain.The total sum of daily average pollenconcentrations amounted to 148,645 pollen grainsbelonging to 93 different taxa. A daily averageof 74 pollen grains/m3 and 11 taxa wererecorded, with maxima of 1157 and 27respectively. The total pollen amountregistered in a year correlated with yearlyrainfall, but there was no relation with meanannual temperature. As for annual fluctuations,there seemed to be no influence by totalrainfall or temperature. Spring and winter werethe seasons with the highest pollen counts andpollen diversity.From the 93 identified taxa, 36 are included inthe pollen calendar. Noteworthy findings are:(i) the presence of Thymelaeaceae,Robinia, Betula, Castanea,Zygophyllum, Caryophyllaceae andCannabis, (ii) a long pollen season ofChenopodiaceae/Amaranthaceae, Urticaceae,Poaceae, Arecaceae and Plantago, (iii)the occurrence of summer, autumn and winterflowering of Artemisia, (iv) the lateappearance of Corylus pollen, and (v) theminor presence of Casuarina pollen duringthe mid winter and late spring.  相似文献   

15.
Adem Bicakci 《Biologia》2006,61(4):457-461
In this study, pollen grains were identified using Durham sampler in the atmosphere of Sakarya in 2000 and 2001. During these two years, a total of 10 805 pollen grains were recorded. A total of 5 386 pollen grains per cm2 were recorded in 2000 and a total of 5 419 pollen grains per cm2 in 2001. Pollen fall in the years 2000–2001 comprised grains belonging to 40 taxa and some unidentified pollen grains. Of these taxa, 22 belonged to arboreal and 18 taxa to non arboreal plants. Total pollen grains consisted of 69.45% grains from arboreal plants, 28.11% grains from non-arboreal plants and 2.44% unidentified pollen grains. In the region investigated, Gramineae, Pinus sp., Quercus sp., Cupressaceae/Taxaceae, Salix sp., Platanus sp., Populus sp., Carpinus sp., Fagus sp., Chenopodiaceae/Amaranthaceae, Xanthium sp., Moraceae, Corylus sp., Fraxinus sp., and Urticaceae released the greatest amount of pollen. The season of maximum pollen fall was from March to May, with a prevalence of arboreal pollen in the first months, and of pollen from non-arboreal plants in the last months of the year.  相似文献   

16.
In this study, airborne pollen grains of Yalova province were investigated using VPSS 2000 from January to December 2004. During studying period, a total of 22409 pollen grains/m3 which belonged to 46 taxa and 74 unidentified pollen grains were recorded. From the identified taxa, 26 belong to arboreal and 20 to non-arboreal plants. Total pollen grains consist of 80.50% arboreal, 19.17% non-arboreal plants and 0.33% unidentified pollen grains. In the investigated region, from arboreal plant taxa Platanus spp. (29.08%), Cupressaceae/Taxaceae (21.22%), Pinus spp. (7.34%), Alnus spp. (4.75%), Castanea spp. (3.03%), Quercus spp. (3.07%), Olea spp. (2.50%), Acer spp. (2.21%), Corylus spp. (1.41%) and Fagus spp. (1.15%), and from non-arboreal plant taxa Poaceae (10.01%), Asteraceae (2.86%), Plantago spp. (1.47%) and Artemisia spp. (1.11%) were responsible for the greatest amounts of pollen.  相似文献   

17.
Previous work on Betula spp. (birch) in the UK and at five sites in Europe has shown that pollen seasons for this taxon have tended to become earlier by about 5–10 days per decade in most regions investigated over the last 30 years. This pattern has been linked to the trend to warmer winters and springs in recent years. However, little work has been done to investigate the changes in the pollen seasons for the early flowering trees. Several of these, such as Alnus spp. and Corylus spp., have allergens, which cross-react with those of Betula spp., and so have a priming effect on allergic people. This paper investigates pollen seasons for Alnus spp. and Corylus spp. for the years 1996–2005 at Worcester, in the West Midlands, United Kingdom. Pollen data for daily average counts were collected using a Burkard volumetric trap sited on the exposed roof of a three-storey building. The climate is western maritime. Meteorological data for daily temperatures (maximum and minimum) and rainfall were obtained from the local monitoring sites. The local area up to approximately 10 km surrounding the site is mostly level terrain with some undulating hills and valleys. The local vegetation is mixed farmland and deciduous woodland. The pollen seasons for the two taxa investigated are typically late December or early January to late March. Various ways of defining the start and end of the pollen seasons were considered for these taxa, but the most useful was the 1% method whereby the season is deemed to have started when 1% of the total catch is achieved and to have ended when 99% is reached. The cumulative catches (in grains/m3) for Alnus spp. varied from 698 (2001) to 3,467 (2004). For Corylus spp., they varied from 65 (2001) to 4,933 (2004). The start dates for Alnus spp. showed 39 days difference in the 10 years (earliest 2000 day 21, latest 1996 day 60). The end dates differed by 26 days and the length of season differed by 15 days. The last 4 years in the set had notably higher cumulative counts than the first 2, but there was no trend towards earlier starts. For Corylus spp. start days also differed by 39 days (earliest 1999 day 5, latest 1996 day 44). The end date differed by 35 days and length of season by 26 days. Cumulative counts and lengths of season showed a distinct pattern of alternative high (long) and low (short) years. There is some evidence of a synchronous pattern for Alnus spp.. These patterns show some significant correlations with temperature and rainfall through the autumn, winter and early spring, and some relationships with growth degree 4s and chill units, but the series is too short to discern trends. The analysis has provided insight to the variation in the seasons for these early flowering trees and will form a basis for future work on building predictive models for these taxa.  相似文献   

18.
Aim The boreal tree line is a prominent biogeographic feature, the position of which reflects climatic conditions. Pollen is the key sensor used to reconstruct past tree line patterns. Our aims in this study were to investigate pollen–vegetation relationships at the boreal tree line and to assess the success of a modified version of the biomization method that incorporates pollen productivity and dispersal in distinguishing the tree line. Location Northern Canada (307 sites) and Alaska (316 sites). Methods The REVEALS method for estimating regional vegetation composition from pollen data was simplified to provide correction factors to account for differential production and dispersal of pollen among taxa. The REVEALS‐based correction factors were used to adapt the biomization method and applied as a set of experiments to pollen data from lake sediments and moss polsters from the boreal tree line. Proportions of forest and tundra predicted from modern pollen samples along two longitudinal transects were compared with those derived from a vegetation map by: (1) a tally of ‘correct’ versus ‘incorrect’ assignments using vegetation in the relevant map pixels, and (2) a comparison of the shape and position of north–south forest‐cover curves generated from all transect pixels and from pollen data. Possible causes of bias in the misclassifications were assessed. Results Correcting for pollen productivity alone gave fewest misclassifications and the closest estimate of the modern mapped tree line position (Canada, + 300 km; Alaska, + 10 km). In Canada success rates were c. 40–70% and all experiments over‐predicted forest cover. Most corrections improved results over uncorrected biomization; using only lakes improved success rates to c. 80%. In Alaska success rates were 70–80% and classification errors were more evenly distributed; there was little improvement over uncorrected biomization. Main conclusions Corrected biomization should improve broad‐scale reconstructions of spatial patterns in forest/non‐forest vegetation mosaics and across climate‐sensitive ecotones. The Canadian example shows this is particularly the case in regions affected by taxa with extremely high pollen productivity (such as Pinus). Improved representation of actual vegetation distribution is most likely if pollen data from lake sediments are used because the REVEALS algorithm is based on the pollen dynamics of lake‐based systems.  相似文献   

19.
Aim To use surface pollen and vegetation relationships to aid the interpretation of a Holocene pollen record. Location South‐west Tasmania, Australia. Methods A survey was undertaken of surface‐pollen samples from the major regional vegetation types: alpine, rain forest and moorland. Relationships between vegetation type and surface‐pollen representation were analysed using twinspan classification and ordination. A core was retrieved from moorland vegetation, and interpretation of the fossil pollen sequence was aided using relationships detected in our surface‐pollen analysis. Results Regional vegetation types are reflected in the pollen rain of south‐west Tasmania, despite the over‐representation of important rain forest tree species in samples from non‐forest sites. twinspan classification of the surface‐pollen samples identified the following indicator pollen taxa for each vegetation type: Astelia alpina (alpine); Lagarostrobos franklinii (rain forest); Leptospermum and Melaleuca (moorland). Detrended correspondence analysis of the surface‐pollen samples clearly separates samples from each vegetation type. Correlation of the ordination axes with environmental data identified a dominant temperature/altitudinal gradient in the surface‐pollen data (R = 0.852/0.844). Application of the results of the surface‐pollen analysis to the fossil sequence revealed that fire‐promoted moorland has dominated the local environment around the core site for the entire Holocene. Changes in fossil pollen composition also suggest that temperatures increased through the Late Glacial to peak in the mid‐Holocene and declined thereafter, a trend consistent with other sites in the region. Main conclusions Pollen spectra can successfully be used to predict local vegetation in south‐west Tasmania. At least this part of inland south‐west Tasmania has remained forest‐free throughout the Holocene, conflicting with the dominant palaeoecological paradigm of a mid‐Holocene dominated by rain forest. A comparison with pollen records from moorland vegetation across the region suggests that fire‐promoted moorland has dominated the landscape since the Late Glacial. We suggest that burning by people through the Late Glacial (if not earlier) facilitated the spread of moorland throughout the region, greatly restricting the expansion of rain forest. The continued influence of fire throughout the Holocene in this perennially wet landscape argues for a revision of the dominant human‐occupation model that depicts an abandonment of the interior of south‐west Tasmania in the Late Glacial in response to the expansion of rain forest.  相似文献   

20.
Aim To reconstruct the flora, vegetation, climate and palaeoaltitude during the Miocene (23.03–5.33 Ma) in Central Europe. Location Six outcrop sections located in different basins of the Central Paratethys in Austria. Methods Pollen analysis was used for the reconstruction of the vegetation and climate. The altitude of the Eastern Alps that are adjacent to the Alpine Foreland and Vienna basins has been estimated using a new quantification method based on pollen data. This method uses biogeographical and climatological criteria such as the composition of the modern vegetation belts in the European mountains and Miocene annual temperature estimates obtained from fossil pollen data. Results Pollen changes from Early to Late Miocene have been observed. The vegetation during the Burdigalian and Langhian (20.43–13.65 Ma) was dominated by thermophilous elements such as evergreen trees, typical of a present‐day evergreen rain forest at low altitudes (i.e. south‐eastern China). During the Serravallian and Tortonian (13.65–7.25 Ma) several thermophilous elements strongly decreased, and some disappeared from the Central European region. This kind of vegetation was progressively substituted by one enriched in deciduous and mesothermic plants. Middle‐altitude (Cathaya, Cedrus and Tsuga) and high‐altitude (Abies and Picea) conifers increased considerably during the Langhian and later on during the Serravallian and Tortonian. Main conclusions Pollen changes are related to climatic changes and to the uplift of the Alpine massifs. The vegetation during the Burdigalian and Langhian reflects the Miocene climatic optimum. The decrease in thermophilous plants during the Serravallian and Tortonian can be interpreted as a climatic cooling and can be correlated with global and regional climatic changes. This study shows that the palaeoaltitude of the eastern part of the Eastern Alps during the Burdigalian was not high enough for Abies and Picea to form a forest. Therefore, we inferred that the summits of most of the mountains would have been less than 1800 m. The substantial increase of middle‐ and high‐altitude conifers in the pollen spectra suggests that the uplift rate increased during the Langhian in this region. Based on higher palaeoaltitude estimations for the pollen floras from the studied sections of Austria, we infer that the uplift of the easternmost part of the Alpine chain continued during the Serravallian and Tortonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号