首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The finite element (FE) model of the pelvic joint is helpful for clinical diagnosis and treatment of pelvic injuries. However, the effect of an FE model boundary condition on the biomechanical behavior of a pelvic joint has not been well studied. The objective of this study was to study the effect of boundary condition on the pelvic biomechanics predictions. A 3D FE model of a pelvis using subject-specific estimates of intact bone structures, main ligaments and bone material anisotropy by computed tomography (CT) gray value was developed and validated by bone surface strains obtained from rosette strain gauges in an in vitro pelvic experiment. Then three FE pelvic models were constructed to analyze the effect of boundary condition, corresponding to an intact pelvic joint, a pelvic joint without sacroiliac ligaments and a pelvic joint without proximal femurs, respectively. Vertical load was applied to the same pelvis with a fixed prosthetic femoral stem and the same load was simulated in the FE model. A strong correlation coefficient (R(2)=0.9657) was calculated, which indicated a strong correlation between the FE analysis and experimental results. The effect of boundary condition changes on the biomechanical response depended on the anatomical location and structure of the pelvic joint. It was found that acetabulum fixed in all directions with the femur removed can increase the stress distribution on the acetabular inner plate (approximately double the original values) and decrease that on the superior of pubis (from 7 MPa to 0.6 MPa). Taking sacrum and ilium as a whole, instead of sacroiliac and iliolumber ligaments, can influence the stress distribution on ilium and pubis bone vastly. These findings suggest pelvic biomechanics is very dependent on the boundary condition in the FE model.  相似文献   

2.
Fixation of uncemented implant is influenced by peri-prosthetic bone ingrowth, which is dependent on the mechanical environment of the implant–bone structure. The objective of the study is to gain an insight into the tissue differentiation around an acetabular component. A mapping framework has been developed to simulate appropriate mechanical environment in the three-dimensional microscale model, implement the mechanoregulatory tissue differentiation algorithm and subsequently assess spatial distribution of bone ingrowth around an acetabular component, quantitatively. The FE model of implanted pelvis subjected to eight static load cases during a normal walking cycle was first solved. Thereafter, a mapping algorithm has been employed to include the variations in implant–bone relative displacement and host bone material properties from the macroscale FE model of implanted pelvis to the microscale FE model of the beaded implant–bone interface. The evolutionary tissue differentiation was observed in each of the 13 microscale models corresponding to 13 acetabular regions. The total implant–bone relative displacements, averaged over each region of the acetabulum, were found to vary between 10 and 60 \(\upmu \hbox {m}\). Both the linear elastic and biphasic poroelastic models predicted similar mechanoregulatory peri-prosthetic tissue differentiation. Considerable variations in bone ingrowth (13–88 %), interdigitation depth (0.2–0.82 mm) and average tissue Young’s modulus (970–3430 MPa) were predicted around the acetabular cup. A progressive increase in the average Young’s modulus, interdigitation depth and decrease in average radial strains of newly formed tissue layer were also observed. This scheme can be extended to investigate tissue differentiation for different surface texture designs on the implants.  相似文献   

3.
The effect of a short-stem femoral resurfacing component on load transfer and potential failure mechanisms has rarely been studied. The stem length has been reduced by approximately 50% as compared to the current long-stem design. Using 3-D FE models of natural and resurfaced femurs, the study is aimed at investigating the influence of a short-stem resurfacing component on load transfer and bone remodelling. Applied loading conditions include normal walking and stair climbing. The mechanical role of the stem along with implant–cement and stem–bone contact conditions was observed to be crucial. Shortening the stem length to half of the current length (long-stem) led to several favourable effects, even though the stress distributions in the implant and the cement were similar in both the cases. The short-stem implant led not only to a more physiological stress distribution but also to bone apposition (increase of 20–70% bone density) in the superior resurfaced head, when the stem–bone contact prevailed. This also led to a reduction in strain concentration in the cancellous bone around the femoral neck–component junction. The normalised peak strain in this region was lower for the short-stem design as compared to that of the long-stem one, thereby reducing the initial risk of neck fracture. The effect of strain shielding (50–75% reduction) was restricted to a small bone volume underlying the cement, which was approximately half of that of the long-stem design. Consequently, bone resorption was considerably less for the short-stem design. The short-stem design offers better prospects than the long-stem resurfacing component.  相似文献   

4.
Periprosthetic osteolysis in the retroacetabular region with cancellous bone loss is a recognized phenomenon in the long-term follow-up of total hip replacement. The effects on load transfer in the presence of defects are less well known. A finite element model incorporating a retroacetabular defect behind a cementless component was validated against a 4th generation sawbone pelvis. Computational predictions of surface strain and von Mises stresses were closely correlated to experimental findings. The presence of a cancellous defect increased von Mises stress in the cortical bone of the medial wall of the pelvis. At a load of 600 N this was under the predicted failure stress for cortical bone. Increases in the cup size relative to the acetabulum caused increased stress in the cortical bone of the lateral wall of the pelvis, adjacent to the acetabulum. We are confident that our modeling approach can be applied to patient specific defects to predict pelvis stress with large loads and a range of activities.  相似文献   

5.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

6.
Lower survival rates were observed for the implant placed in the anterior maxilla. The purpose of this study was to investigate the influence of different implant lengths on the stress distribution around osseointegrated implants under a static loading condition in the anterior maxilla using a three-dimensional finite element analysis. The diameter of 4.0 mm external type implants of different lengths (8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) was used in this study. The anterior maxilla was assumed to be D3 bone quality. All the material was assumed to be homogenous, isotropic and linearly elastic. The implant–bone interface was constructed using a rigid element for simulating the osseointegrated condition. Then, 176 N of static force was applied on the middle of the palatoincisal line angle of the abutment at a 120°angle to the long axis of abutment. The von Mises stress value was measured with an interval of 0.25 mm along the bone–implant interface. Incremental increase in implant length causes a gradual reduction of maximum and average von Mises stress at the labial portion within the implant. In the bone, higher stress was concentrated within cortical bone area and more distributed at the labial cortex, while cancellous bone showed relatively low stress concentration and even distribution. An increase in implant length reduced stress gradients at the cortical peri-implant region. Implant length affects the mechanisms of load transmission to the osseointegrated implant. On the basis of this study the biomechanical stress-based performance of implants placed in the anterior maxilla improves when using longer implants.  相似文献   

7.
A pelvic endoprosthesis is the primary means of pelvic reconstruction after internal hemipelvectomy. In this study, a novel biomimetic hemipelvic prosthesis, including an artificial ilium, an artificial acetabulum, and an artificial pubis, was developed. A Finite Element Method (FEM) was carried out to investigate the biomechanical performance of a pelvis reconstructed with biomimetic hemipelvic prosthesis. Two models, including the reconstructed pelvis and the original pelvis (control model), were established according to the geometry from CT data of a human male patient with pelvic bone sarcomas. The FE models predict that the biomeehanical function of the pelvic ring can be reestablished using this prosthesis. Results show that the body force loaded on the S 1 vertebra is restored and transferred towards the sacro-iliac joint, and along the ilium onto the bearing surface of the artificial ilium, then to the artificial acetabulum and pubis. Von Mises stresses observed in this reconstructed pelvis model are still within a low and elastic range below the yielding strength of cortical bone and Ti6A14V. The values of deformation and strain of the reconstructed pelvis are close to the data obtained in the original pelvis. With the partial replacement of the pubis, little influence is found towards the pubis symphysis. However, the interface between the prosthesis and pelvic bone may become the critical part of the reconstructed pelvis due to the discontinuity in the material properties, which results in stress shielding and deformation constraining. So a biomimetic flexible connection or inter layer to release the deformation of pelvis is suggested in future designing.  相似文献   

8.
Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior-posterior displacements and internal-external rotations were produced by the model with 20 mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for -20 mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors' knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio-femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.  相似文献   

9.
The reliability of patient-specific finite element (FE) modelling is dependent on the ability to provide repeatable analyses. Differences of inter-operator generated grids can produce variability in strain and stress readings at a desired location, which are magnified at the surface of the model as a result of the partial volume edge effects (PVEEs). In this study, a new approach is introduced based on an in-house developed algorithm which adjusts the location of the model's surface nodes to a consistent predefined threshold Hounsfield unit value. Three cadaveric human femora specimens were CT scanned, and surface models were created after a semi-automatic segmentation by three different experienced operators. A FE analysis was conducted for each model, with and without applying the surface-adjustment algorithm (a total of 18 models), implementing identical boundary conditions. Maximum principal strain and stress and spatial coordinates were probed at six equivalent surface nodes from the six generated models for each of the three specimens at locations commonly utilised for experimental strain guage measurement validation. A Wilcoxon signed-ranks test was conducted to determine inter-operator variability and the impact of the PVEE-adjustment algorithm. The average inter-operator difference in stress values was significantly reduced after applying the adjustment algorithm (before: 3.32 ± 4.35 MPa, after: 1.47 ± 1.77 MPa, p = 0.025). Strain values were found to be less sensitive to inter-operative variability (p = 0.286). In summary, the new approach as presented in this study may provide a means to improve the repeatability of subject-specific FE models of bone obtained from CT data.  相似文献   

10.

Background

Pelvic reconstruction after hemipelvectomy can greatly improve the weight-bearing stability of the supporting skeleton and improve patients’ quality of life. Although an autograft can be used to reconstruct pelvic defects, the most suitable choice of autograft, i.e., the use of either femur or tibia, has not been determined. We aimed to analyze the mechanical stresses of a pelvic ring reconstructed using femur or tibia after hemipelvectomy using finite element (FE) analysis.

Methods

FE models of normal and reconstructed pelvis were established based on computed tomography images, and the stress distributions were analyzed under physiological loading from 0 to 500 N in both intact and restored pelvic models using femur or tibia.

Results

The vertical displacement of the intact pelvis was less than that of reconstructed pelvis, but there was no significant difference between the two reconstructed models. In FE analysis, the stress distribution of the intact pelvic model was bilaterally symmetric and the maximum stresses were located at the sacroiliac joint, arcuate line, ischiatic ramus, and ischial tuberosity. The maximum stress in each part of the reconstructed pelvis greatly exceeded that of the intact model. The maximum von Mises stress of the femur was 13.9 MPa, and that of the tibia was 6.41 MPa. However, the stress distribution was different in the two types of reconstructed pelvises. The tibial reconstruction model induced concentrated stress on the tibia shaft making it more vulnerable to fracture. The maximum stress on the femur was concentrated on the connections between the femur and the screws.

Conclusions

From a biomechanical point of view, the reconstruction of hemipelvic defects with femur is a better choice.  相似文献   

11.
Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. To help understand and better predict TBI, researchers have developed complex finite element (FE) models of the head which incorporate many biological structures such as scalp, skull, meninges, brain (with gray/white matter differentiation), and vasculature. However, most models drastically simplify the membranes and substructures between the pia and arachnoid membranes. We hypothesize that substructures in the pia–arachnoid complex (PAC) contribute substantially to brain deformation following head rotation, and that when included in FE models accuracy of extra-axial hemorrhage prediction improves. To test these hypotheses, microscale FE models of the PAC were developed to span the variability of PAC substructure anatomy and regional density. The constitutive response of these models were then integrated into an existing macroscale FE model of the immature piglet brain to identify changes in cortical stress distribution and predictions of extra-axial hemorrhage (EAH). Incorporating regional variability of PAC substructures substantially altered the distribution of principal stress on the cortical surface of the brain compared to a uniform representation of the PAC. Simulations of 24 non-impact rapid head rotations in an immature piglet animal model resulted in improved accuracy of EAH prediction (to 94 % sensitivity, 100 % specificity), as well as a high accuracy in regional hemorrhage prediction (to 82–100 % sensitivity, 100 % specificity). We conclude that including a biofidelic PAC substructure variability in FE models of the head is essential for improved predictions of hemorrhage at the brain/skull interface.  相似文献   

12.
During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone–implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these techniques. This study describes the anisotropic biomechanical response of cancellous bone through stress–strain curves of equivalent bulk geometries. A cancellous bone segment, reverse engineered by micro computed tomography, was subjected to uniaxial compression. The material's constitutive law, obtained by nano-indentations, was considered during the simulation of the experimental process. A homodimensionally bulk geometry was employed to determine equivalent properties, resulting in a similar anisotropic response to the trabecular structure. The experimental verification of our model sustained that the obtained stress–strain curves can adequately reflect the post-yield behaviour of the sample. The introduced approach facilitates the consideration of nonlinearity and anisotropy of the tissue, while reducing the geometrical complexity of the model to a minimum.  相似文献   

13.
Theories of mechanical adaptation of bone suggest that mechanical loading causes bone formation at discrete locations within bone microstructure experiencing the greatest mechanical stress/strain. Experimental testing of such theories requires in vivo loading experiments and high-resolution finite element models to determine the distribution of mechanical stresses. Finite element models of in vivo loading experiments typically assume idealized boundary conditions with applied load perfectly oriented on the bone, however small misalignments in load orientation during an in vivo experiment are unavoidable, and potentially confound the ability of finite element models to predict locations of bone formation at the scale of micrometers. Here we demonstrate two different three-dimensional spatial correlation methods to determine the effects of misalignment in load orientation on the locations of high mechanical stress/strain in the rodent tail loading model. We find that, in cancellous bone, the locations of tissue with high stress are maintained under reasonable misalignments in load orientation (p<0.01). In cortical bone, however, angular misalignments in the dorsal direction can alter the locations of high mechanical stress, but the locations of tissue with high stress are maintained under other misalignments (p<0.01). We conclude that, when using finite element models of the rodent tail loading model, small misalignments in loading orientation do not affect the predicted locations of high mechanical stress within cancellous bone.  相似文献   

14.
Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6–8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at ?20 °C immediately and were put into 21 °C Ringer’s solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p < 0.05 was significant. Shear modulus was significantly reduced by thermodisinfection to 1.02 ± 0.31 GPa from 1.28 ± 0.68 GPa for unprocessed cancellous bone (p = 0.029) since thermodisinfection reduced pressure modulus not significantly from 6.30 ± 4.72 GPa for native specimens to 4.97 ± 2.23 GPa and maximum bending force was 270.03 ± 116.68 N for native and 228.80 ± 70.49 N for thermodisinfected cancellous bone. Shear and pressure modulus were reduced by thermodisinfection around 20 % and maximum bending force was impaired by about 15 % compared with native cancellous bone since only the reduction of shear modulus reached significance. The results suggest that thermodisinfection similarly affects different mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.  相似文献   

15.
Initial stability is essential for open reduction internal fixation of intraarticular calcaneal fractures. Geometrical feature of a calcaneal plate is influential to its endurance under physiological load. It is unclear if conventional and pre-contoured anatomical calcaneal plates may exhibit differently in biomechanical perspective. A Sanders’ Type II-B intraarticular calcaneal fracture model was reconstructed to evaluate the effectiveness of calcaneal plates using finite element methods. Incremental vertical joint loads up to 450 N were exerted on the subtalar joint to evaluate the stability and safety of the calcaneal plates and bony structure. Results revealed that the anatomical calcaneal plate model had greater average structural stiffness (585.7 N/mm) and lower von Mises stress on the plate (774.5 MPa) compared to those observed in the conventional calcaneal plate model (stiffness: 430.9 N/mm; stress on plate: 867.1 MPa). Although both maximal compressive and maximal tensile stress and strain were lower in the anatomical calcaneal plate group, greater loads on fixation screws were found (average 172.7 MPa compared to 82.18 MPa in the conventional calcaneal plate). It was noted that high magnitude stress concentrations would occur where the bone plate bridges the fracture line on the lateral side of the calcaneus bone. Sufficient fixation strength at the posterolateral calcaneus bone is important for maintaining subtalar joint load after reduction and fixation of a Sanders’ Type II-B calcaneal fracture. In addition, geometrical design of a calcaneal plate should worth considering for the mechanical safety in practical usage.  相似文献   

16.
Experimental studies have been made to study and validate the biomechanics of the pair femur/acetabulum considering both structures without the presence of cartilage. The main goal of this study was to validate a numerical model of the intact hip. Numerical and experimental models of the hip joint were developed with respect to the anatomical restrictions. Both iliac and femur bones were replicated based on composite replicas. Additionally, a thin layer of silicon rubber was used for the cartilage. A three-dimensional finite element model was developed and the boundary conditions of the models were applied according to the natural physiological constrains of the joint. The loads used in both models were used just for comparison purposes. The biomechanical behaviour of the models was assessed considering the maximum and minimum principal bone strains and von Mises stress. We analysed specific biomechanical parameters in the interior of the acetabular cavity and on femur's surface head to determine the role of the cartilage of the hip joint within the load transfer mechanism. The results of the study show that the stress observed in acetabular cavity was 8.3 to 9.2 MPa. When the cartilage is considered in the joint model, the absolute values of the maximum and minimum peak strains on the femur's head surface decrease simultaneously, and the strains are more uniformly distributed on both femur and iliac surfaces. With cartilage, the cortex strains increase in the medial side of the femur. We prove that finite element models of the intact hip joint can faithfully reproduce experimental models with a small difference of 7%.  相似文献   

17.
To enable large-scale multi-factorial finite element (FE) studies, the FE models used must be as computationally efficient as is feasible, while maintaining a suitable level of definition. The present study seeks to find an optimum level of model complexity for use in such large-scale studies by investigating which model attributes are most influential over the chosen model outputs of principal stress and strain in the intact acetabulum. A multi-factorial sensitivity study was carried out using 128 FE models, representing combinations of the following variables: bone stiffness distribution, imposed muscle loading, boundary condition location, hip joint contact conditions and patient's bone anatomy. The relative sensitivity of each input factor was analysed, and it was concluded that the optimum level of model definition must include CT-dependent trabecular bone properties and a sliding interface at the hip joint. It was found that it was not essential to describe the ligamentous sacroiliac and pubic symphysis joints; these could be rigidly fixed in space; and for the normal walking load case, muscle forces may be neglected. It was also concluded that a variety of bone anatomies should be included in a multi-factorial analysis if results are to be inferred for a wider population.  相似文献   

18.
The effects of femoral prosthetic heads of diameters 22 and 28 mm were investigated on the stability of reconstructed hemi-pelves with cement mantles of thicknesses 1–4 mm and different bone qualities. Materialise medical imaging package and I-Deas finite element (FE) software were used to create accurate geometry of a hemi-pelvis from CT-scan images. Our FE results show an increase in cement mantle stresses associated with the larger femoral head. When a 22 mm femoral head is used on acetabulae of diameters 56 mm and above, the probability of survivorship can be increased by creating a cement mantle of at least 1 mm thick. However, when a 28 mm femoral head is used, a cement mantle thickness of at least 4 mm is needed. Poor bone quality resulted in an average 45% increase in the tensile stresses of the cement mantles, indicating resulting poor survivorship rate.  相似文献   

19.
Using finite element analyses, we investigated which muscle groups acting around the hip-joint most prominently affected the load distributions in cemented total hip reconstructions with a bonded and debonded femoral stem. The purpose was to determine which muscle groups should be included in pre-clinical tests, predicting bone adaptation and mechanical failure of cemented reconstructions, ensuring an adequate representation of in vivo loading of the reconstruction. Loads were applied as occurring during heel-strike, mid-stance and push-off phases of gait. The stress/strain distributions within the reconstruction, produced by the hip-joint contact force, were compared to ones produced after sequentially including the abductors, the iliotibial tract and the adductors and vastii. Inclusion of the abductors had the most pronounced effect. They neutralized lateral bending of the reconstruction at heel-strike and increased medial bending at mid-stance and push-off. Bone strains and stem stresses were changed accordingly. Peak tensile cement stresses were reduced during all gait phases by amounts up to 50% around a bonded stem and 11% around a debonded one. Additional inclusion of the iliotibial tract, the adductors and the vastii produced relatively small effects during all gait phases. Their most prominent effect was a slight reduction of bone strains at the level of the stem tip during heel-strike. These results suggest that a loading configuration including the hip-joint contact force and the abductor forces can adequately reproduce in vivo loading of cemented total hip reconstructions in pre-clinical tests.  相似文献   

20.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号