首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

2.
The phylogeny of anopheline mosquitoes (Culicidae: Anophelinae) is re‐examined using morphological data derived from adults, fourth‐instar larvae and pupae. Based on the data set of Sallum et al. (2000), we add some previously missing data and simplify and recode characters to eliminate ambiguities and more accurately reflect homologies, with special emphasis on characters of the male genitalia that provide the main criteria for the subgeneric classification of genus Anopheles. The principal aim of the study is to assess objectively the phylogenetic relationships and classification of two taxa not included by Sallum et al. (2000): Anopheles corethroides, a representative of the Australasian Stigmaticus Group, and An. kyondawensis, an unusual Oriental species whose adult and pupal stages were only recently discovered. The revised data set consists of 167 characters for 66 species representing the three traditionally recognised genera of Anophelinae, the six traditionally accepted subgenera of genus Anopheles and all informal series and most species groups of subgenera Anopheles, Cellia and Nyssorhynchus. The data are analysed using equal weighting (EW) and implied weighting (IW). Analysis under EW generates a strict consensus tree with principal lineages consistent with those reported by Sallum et al. (2000). Analysis under IW supports the monophyly of Anophelinae, the basal position of Chagasia, the monophyly of subgenera Cellia, Kerteszia and Nyssorhynchus, and the sister relationship of Kerteszia + Nyssorhynchus, but otherwise yields relationships that differ significantly in one respect or another from those obtained in all previous analyses of both morphological and molecular data. Subgenus Anopheles is arrayed as a polyphyletic lineage basal to a monophyletic clade comprising the Neotropical Kerteszia + Nyssorhynchus and the Old World Cellia in a sister‐group relationship. Bironella, Lophopodomyia and Stethomyia are firmly nested within subgenus Anopheles, which would nevertheless still be paraphyletic if these taxa were subsumed within it. Anopheles kyondawensis is well supported as the sister group of Bironella + all other Anopheles. Bironella, Stethomyia, An. corethroides and several other Anopheles clades are each strongly supported in a pectinate series of relationships, terminating in the clade comprising subgenera Cellia, Kerteszia and Nyssorhynchus. These relationships and other aspects of the phylogeny are discussed in relation to the formal and informal classification of genus Anopheles.  相似文献   

3.
Zrzavý, J. & ?i?ánková, V. (2004). Phylogeny of Recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. — Zoologica Scripta, 33, 311–333. Phylogenetic relationships within the Canidae are examined, based on three genes (cytb, COI, COII) and 188 morphological, developmental, behavioural and cytogenetic characters. Both separate and combined phylogenetic analyses were performed. To inspect the phylogenetic ‘behaviour’ of individual taxa, basic phylogenetic analysis was followed by experimental cladistic analyses based on different data‐partition combinations and taxon‐removal analyses. The following phylogeny of the Recent Canidae is preferred: (1) Urocyon is the most basal canid; (2) Vulpes is a monophyletic genus (including Fennecus and Alopex); (3) the doglike canids (DC) form a clade (=Dusicyon + Pseudalopex + Lycalopex + Cerdocyon + Atelocynus + Chrysocyon + Speothos + Lycaon + Cuon + Canis), split into two subclades, South American and Afro‐Holarctic, with uncertain position of the Chrysocyon + Speothos subclade; (4) Canis is paraphyletic due to the position of Lycaon and Cuon. Otocyon and Nyctereutes are the most problematic canid genera, causing an unresolved branching pattern of Otocyon, Vulpes, Nyctereutes and DC clades. Reclassification of the two basal species of ‘Canis’ into separate genera is proposed (Schaeffia for ‘C.’ adustus, Lupulella for ‘C.’ mesomelas). Although the morphological dataset ranked poorly in both separate and simultaneous analyses (measured by number of minimum‐length topologies, relative number of resolved nodes in the strict consensus of all minimum‐length topologies, consistency and retention indices, nodal dataset influence, and number of extra steps required by the data partition to reach the topology of the combined tree), the morphological synapomorphies represent nearly one quarter of all synapomorphies in the combined tree. Among the hidden morphological support of the combined tree the developmental and behavioural characters are conspicuously abundant.  相似文献   

4.

Five terminal taxa (at the generic level) of Placodontia are recognized; the status of Psephosaurus remains problematical. A cladistic analysis of the interrelationships of Placodontia, based on 30 characters, results in two equally parsimonious trees. The Placodontia comprise two major subclades, the Placodontoidea and the Cyamodontoidea. Within the Placodontoidea, Paraplacodus is the sister‐taxon of Placodus. Within the Cyamodontoidea, Henodus is the most basal clade in one tree, a crown‐group cyamodontoid (the sister‐taxon of Placochelys) in the second tree. Cyamodus is the sister‐taxon of a clade comprising Placochelys and Psephoderma in the first tree, and is the most basal cyamodontoid clade in the second tree. The second tree is provisionally accepted because of the late appearance of Henodus in the fossil record of placodonts. The significance of these findings for the reconstruction of the paleobiogeographical history of the group is discussed.  相似文献   

5.
Efforts to clarify the affinities of the torós or brush-tailed rats (Isothrix) and document the radiation of these distinctive echimyids have been limited. The discovery of a new Andean species prompted a reanalysis of Isothrix and its relatives. Prior morphological analyses of skulls, mandibles, teeth, and external characters permitted robust diagnosis but offered little resolution of within- or between-group relationships. Analyses of mitochondrial cytochrome b sequences (798 bp), which are available for numerous echimyids, confirm the monophyly of recognized genera, including Isothrix, and resolve a number of interspecific relationships. Strikingly, the Andean toró (Isothrix barbarabrownae) is consistently recovered as sister to the remaining species. These are allied into three clades: I. sinnamariensis + I. pagurus in the lower Amazon Basin and Guianan Shield, I. orinoci + I. negrensis in the Rio Negro and Río Orinoco drainages, and I. bistriata across much of the western and southern Amazon Basin. However, the addition of a new basal taxon does not aid in identifying the sister taxon of Isothrix. These relationships are confirmed in combined analyses of cyt-b with sequence variation in the mitochondrial control region (D-loop; 450 bp) and in the nuclear RAG1 gene (1,072 bp). Analyses identify the Andes, or proto-Andes, as an important theater for the group’s evolution and may offer an explanation for the luxuriant fur of this genus. However, neither the biogeographic history of Isothrix nor the remarkable pelage evolution of the Echimyidae can be understood until the deeper nodes within the arboreal spiny rats (Echimyinae) are more fully resolved.  相似文献   

6.
The phylogenetic relationships of nine species of freshwater sponges, representing the families Spongillidae, Lubomirskiidae, and Metaniidae, were inferred from analyses of 18S rDNA, cytochrome oxidase subunit I (COI) mtDNA, and internal transcribed spacer 2 (ITS2) rDNA sequences. These species form a strongly supported monophyletic group within the Demospongiae, with the lithistid Vetulina stalactites as the sister taxon. Within the freshwater sponge clade, the basal taxon is not resolved. Depending upon the method of analysis and sequence, the metaniid species, Corvomeyenia sp., or the spongillid species, Trochospongilla pennsylvanica , emerges as the basal species. Among the remaining freshwater sponge species, the spongillids, Spongilla lacustris and Eunapius fragilis , form a sister group to a clade comprised of the spongillid species, Clypeatula cooperensis , Ephydatia fluviatilis , and Ephydatia muelleri , and the lubomirskiid species, Baikalospongia bacillifera and Lubomisrkia baicalensis . C. cooperensis is the sister taxon of E. fluvialitis , and E. muelleri is the sister taxon of ( B. bacillifera + L. baicalensis ). The family Spongillidae and the genus Ephydatia are thus paraphyletic with respect to the lubomirskiid species; Ephydatia is also paraphyletic to C. cooperensis . We suggest that C. cooperensis be transferred to the genus Ephydatia and that the family Lubomirskiidae be subsumed into the Spongillidae.  相似文献   

7.
Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade. Within the Australasian clade, Diprotodontia is the sister taxon to a Notoryctemorphia + Dasyuromorphia + Peramelemorphia clade. Within the Diprotodontia, Vombatiformes (wombat + koala) is the sister taxon to a paraphyletic possum group (Phalangeriformes) with kangaroos nested inside. Molecular dating analyses suggest Late Cretaceous/Paleocene dates for all interordinal divergences. All intraordinal divergences were placed in the mid to late Cenozoic except for the deepest splits within the Diprotodontia. Our UBBL estimates of the marsupial fossil record indicate that the South American record is approximately as complete as the Australasian record. The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The family Meruidae has been established recently for the newly discovered species Meru phyllisae Spangler & Steiner, 2005 from Southern Venezuela. These beetles are morphologically highly distinct and at a body length of 0.8 mm represent the perhaps smallest individuals of Adephaga. Here, we use DNA sequence data to place this enigmatic taxon relative to other aquatic groups in this suborder. Meruidae was most closely associated with Noteridae, supporting a previous analysis of morphological structures which had suggested this sister relationship, albeit with weak support. While different alignment strategies did not affect the topology, the precise placement of Meruidae was affected by the choice of tree reconstruction method. Bayesian inference suggests a sister relationship of Meruidae + Noteridae, while parsimony analyses retrieve Meruidae + Notomicrus (a basal noterid genus), which combined are the sister group of all remaining Noteridae. Considering morphological evidence, the former placement appears more plausible.  相似文献   

9.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

10.
There has been a great deal of interest in determining phylogenetic relationships within the family Dasyuridae due to the widespread distribution, ecological diversity, and relative plesiomorphy of this taxon within the Australasian marsupial radiation. In the past, it has been extremely problematic to determine the phylogenetic relationships among species within Dasyurus, with numerous studies using both morphological and molecular characters providing different topologies. Here, the mitochondrial DNA (mtDNA) control region is used as a novel set of characters in an attempt to identify relationships among the six closely related extant species. Sequences were obtained from multiple individuals representing all extant species of quolls including, when possible, individuals from different geographical regions. Sequences were analyzed using both parsimony criteria and neighbor-joining methods. Results presented here concur with those of Krajewski et al. (1997) in (1) placing D. geoffroii in a highly supported clade with D. spartacus, (2) resolving a monophyletic group of D. albopunctatus + D. geoffroii + D. spartacus, and (3) placing D. hallucatus as the sister taxon to all other species of quolls. Results also show two highly supported and geographically distinct clades of D. maculatus (Tasmanian and mainland) that do not correspond to the currently used subspecific nomenclature. Preliminary results also indicate that there are different clades among geographic groups of D. hallucatus that warrant further investigation. The mtDNA control region is a highly variable locus and may be used in forensic tests for species identification in this genus.  相似文献   

11.
Phylogenetic analysis of higher-level relationships of Odonata   总被引:3,自引:1,他引:2  
Abstract. This is the most comprehensive analysis of higher‐level relationships in Odonata conducted thus far. The analysis was based on a detailed study of the skeletal morphology and wing venation of adults, complemented with a few larval characters, resulting in 122 phylogenetically informative characters. Eighty‐five genera from forty‐five currently recognized families and subfamilies were examined. In most cases, several species were chosen to serve as exemplars for a given genus. The seven fossil outgroup taxa included were exemplar genera from five successively more distant odonatoid orders and suborders: Tarsophlebiidae (the closest sister group of Odonata, previously placed as a family within ‘Anisozygoptera’), Archizygoptera, Protanisoptera, Protodonata and Geroptera. Parsimony analysis of the data, in which characters were treated both under equal weights and implied weighting, produced cladograms that were highly congruent, and in spite of considerable homoplasy in the odonate data, many groupings in the most parsimonious cladograms were well supported in all analyses, as indicated by Bremer support. The analyses supported the monophyly of both Anisoptera and Zygoptera, contrary to the well known hypothesis of zygopteran paraphyly. Within Zygoptera, two large sister clades were indicated, one comprised of the classical (Selysian) Calopterygoidea, except that Amphipterygidae, which have traditionally been placed as a calopterygoid family, nested within the other large zygopteran clade comprised of Fraser's ‘Lestinoidea’ plus ‘Coenagrionoidea’ (both of which were shown to be paraphyletic as currently defined). Philoganga alone appeared as the sister group to the rest of the Zygoptera in unweighted cladograms, whereas Philoganga + Diphlebia comprised the sister group to the remaining Zygoptera in all weighted cladograms. ‘Anisozygoptera’ was confirmed as a paraphyletic assemblage that forms a ‘grade’ towards the true Anisoptera, with Epiophlebia as the most basal taxon. Within Anisoptera, Petaluridae appeared as the sister group to other dragonflies.  相似文献   

12.
The subfamilies Erinaceinae and Galericinae of the extant family Erinaceidae are the only living representatives of the once diverse taxon Erinaceomorpha. In the present study, we performed the first multilocus analysis of phylogenetic relationships among genera of Erinaceidae and estimated the split times between and within the two subfamilies. The analyses of five nuclear and two mitochondrial genes produced a well‐resolved molecular phylogeny. Generally, the molecular tree is compatible with the morphology‐based taxonomy proposed by Frost, Wozencraft & Hoffmann with the exception of the position of Mesechinus, which is placed as the closest sister taxon of Hemiechinus. Another point of contradiction between molecular and morphological phylogenies is the position of Hylomys megalotis, which was consistently placed as the most basal branch among all gymnures in molecular analyses. Genetic relationships between Erinaceus and Atelerix remain unclear, suggesting a hard trichotomy among these two lineages and Hemiechinus + Paraechinus. Molecular dating suggests an ancient origin of the extant gymnure lineages, which date back to the late Eocene to early Oligocene. The age of the basal split within spiny hedgehogs is relatively recent and corresponds to the Miocene–Pliocene boundary. Possible changes to the erinaceid taxonomy are considered. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 499–519.  相似文献   

13.
In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem‐based (total‐group) definition of Tetrapoda is preferred over apomorphy‐ and node‐based (crown‐group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aistopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scutigerum collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown‐group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti;(5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run ‐ as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data;character reweighting; reverse weighting) ‐ indicate a deep split of early tetrapods between lissamphibian‐ and amniote‐related taxa. Colosteids, Crassigyrinus, Whatcheeria and baphetids are progressively more crownward stemtetrapods. Caerorhachis, embolomeres, gephyrostegids, Solenodonsaurus and seymouriamorphs are progressively more crownward stem‐amniotes. Eucritta is basal to temnospondyls, with crown‐lissamphibians nested within dissorophoids. Westlothiana is basal to Lepospondyli, but evidence for the monophyletic status of the latter is weak. Westlothiana and Lepospondyli form the sister group to diadectomorphs and crown‐group amniotes. Tuditanomorph and microbrachomorph microsaurs are successively more closely related to a clade including proximodistally: (1) lysorophids; (2) Acherontiscus as sister taxon to adelospondyls; (3) scincosaurids plus diplocaulids; (4) urocordylids plus aïstopods. A data set employing cranial characters only places microsaurs on the amniote stem, but forces remaining lepospondyls to appear as sister group to colosteids on the tetrapod stem in several trees. This arrangement is not significantly worse than the tree topology obtained from the analysis of the complete data set. The pattern of sister group relationships in the crownward part of the temnospondyl‐lissamphibian tree re‐emphasizes the important role of dissorophoids in the lissamphibian origin debate. However, no specific dissorophoid can be identiffed as the immediate sister taxon to crown‐group lissamphibians. The branching sequence of various stem‐group amniotes reveals a coherent set of internested character‐state changes related to the acquisition of progressively more terrestrial habits in several Permo‐Carboniferous forms.  相似文献   

14.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

15.
《Journal of bryology》2013,35(3):193-194
Abstract

The relationships within the Bryaceae, with emphasis on the genus Bryum, were studied based on morphological and anatomical characters and using cladistic methods. The analysis was performed with thirty-six species representing the different parts of the family, and with Funaria hygrometrica Hedw., Mnium hornum (Dicks.) Lindb., and Tayloria lingulata Hedw. as outgroups. The Bryaceae, and the subfamilies Bryoideae, Mielichhoferioideae, and Pohlioideae, as defined by several earlier authors appear to be paraphyletic. The genus Bryum seems to be paraphyletic, because Leptobryum pyriforme (Hedw.) Wils., Osculatia columbica De Not., and Rhodobryum giganteum (Schwaegr.) Paris, appear as ingroups within this genus when the tree is rooted with Funaria. Mnium hornum came out as the sister taxon of a clade including Pohlia cruda (Hedw.) Lindb. and P. longicollis (Hedw.) Lindb., whereas P. drummondii (Müll. Hall.) A.L. Andrews, appears not to be closely related to the other two Pohlia species studied here, making this genus paraphyletic. Mielichhoferia mielichhoferiana (Funck.) Loeske, appears as the sister taxon of Schizymenium bryoides Harv., suggesting that both these genera are paraphyletic. Overall, the stabilities of the clades are low and it is suggested that combined analyses of morphological, anatomical, and molecular data are needed to get better resolved and more stable trees.  相似文献   

16.
Abstract. This paper reports the conclusions of studies into the phylogeny of tachyporine group subfamilies and the ‘basal’ lineages of the subfamily Aleocharinae (Coleoptera: Staphylinidae) based on both larval and adult morphological data (133 adult characters, twenty-seven larval characters). Representatives of forty species of the tachyporine group were used in the analysis, including representatives of the Aleocharinae, Trichophyinae, Habrocerinae, Phloeocharinae, Olisthaerinae, and Tachyporinae. The Aleocharinae included representatives of the tribes Gymnusini, Deinopsini, Mesoporini, the ‘subfamily’ Trichopseniinae, and representatives of nine major tribes in the ‘higher’ Aleocharinae (Athetini, Hoplandriini, Falagriini, Lomechisini, Oxypodini, Aleocharini, Myllaenini, Homalotini, and Hypocyphtini). Analyses were performed first with adult characters alone and then with both larval and adult characters in a simultaneous analysis. The analysis based on adult characters produced eighty-five equally parsimonious trees (length = 499, consistency index = 42; retention index = 69). In the consensus tree, the Tachyporinae are not monophyletic, and the sister-group relationship between the Trichophyinae + Habrocerinae and the Aleocharinae is not resolved. The Aleocharinae are monophyletic, but, among the ‘basal’ Aleocharinae, the relationships of Gymnusini + Deinopsini, the Mesoporini, and the Trichopseniinae are unresolved. The combined adult and larval data, using Tachinus as the outgroup, produced six equally parsimonious trees (tree length = 588; consistency index = 43; retention index = 69). The strict consensus tree of the combined larval and adult data supports the following conclusions: (1) larval characters substantially stabilize the tree; (2) the subfamily Tachyporinae is not supported to be monophyletic; (3) the subfamilies Trichophyinae and Habrocerinae are sister groups, and together they are sister to the Aleocharinae; (4) the ‘basal’ Aleocharinae are not a monophyletic group, but the ‘higher’ Aleocharinae are monophyletic; (5) the sister group of the remaining Aleocharinae is a lineage made up of genera currently in the tribes Gymnusini and Deinopsini; (6) within the Gymnusini–Deinopsini lineage, the monophyly of the Gymnusini is weakly supported, but the monophyly of the Deinopsini is strongly supported; (7) the subfamily Trichopseniinae is strongly supported to be a member of the ‘basal’ Aleocharinae; (8) the Myllaenini are resolved well within the ‘higher’ Aleocharinae; (9) strong support for the monophyly of some tribes of ‘higher’ Aleocharinae suggests that morphological characters provide substantial phylogenetic signal for analysis of higher-level phylogeny of the Aleocharinae in spite of the preliminary nature of the analysis at this taxonomic level.  相似文献   

17.
Titanosauriforms represent a diverse and globally distributed clade of neosauropod dinosaurs, but their inter‐relationships remain poorly understood. Here we redescribe Lusotitan atalaiensis from the Late Jurassic Lourinhã Formation of Portugal, a taxon previously referred to Brachiosaurus. The lectotype includes cervical, dorsal, and caudal vertebrae, and elements from the forelimb, hindlimb, and pelvic girdle. Lusotitan is a valid taxon and can be diagnosed by six autapomorphies, including the presence of elongate postzygapophyses that project well beyond the posterior margin of the neural arch in anterior‐to‐middle caudal vertebrae. A new phylogenetic analysis, focused on elucidating the evolutionary relationships of basal titanosauriforms, is presented, comprising 63 taxa scored for 279 characters. Many of these characters are heavily revised or novel to our study, and a number of ingroup taxa have never previously been incorporated into a phylogenetic analysis. We treated quantitative characters as discrete and continuous data in two parallel analyses, and explored the effect of implied weighting. Although we recovered monophyletic brachiosaurid and somphospondylan sister clades within Titanosauriformes, their compositions were affected by alternative treatments of quantitative data and, especially, by the weighting of such data. This suggests that the treatment of quantitative data is important and the wrong decisions might lead to incorrect tree topologies. In particular, the diversity of Titanosauria was greatly increased by the use of implied weights. Our results support the generic separation of the contemporaneous taxa Brachiosaurus, Giraffatitan, and Lusotitan, with the latter recovered as either a brachiosaurid or the sister taxon to Titanosauriformes. Although Janenschia was recovered as a basal macronarian, outside Titanosauria, the sympatric Australodocus provides body fossil evidence for the pre‐Cretaceous origin of titanosaurs. We recovered evidence for a sauropod with close affinities to the Chinese taxon Mamenchisaurus in the Late Jurassic Tendaguru beds of Africa, and present new information demonstrating the wider distribution of caudal pneumaticity within Titanosauria. The earliest known titanosauriform body fossils are from the late Oxfordian (Late Jurassic), although trackway evidence indicates a Middle Jurassic origin. Diversity increased throughout the Late Jurassic, and titanosauriforms did not undergo a severe extinction across the Jurassic/Cretaceous boundary, in contrast to diplodocids and non‐neosauropods. Titanosauriform diversity increased in the Barremian and Aptian–Albian as a result of radiations of derived somphospondylans and lithostrotians, respectively, but there was a severe drop (up to 40%) in species numbers at, or near, the Albian/Cenomanian boundary, representing a faunal turnover whereby basal titanosauriforms were replaced by derived titanosaurs, although this transition occurred in a spatiotemporally staggered fashion. © 2013 The Linnean Society of London  相似文献   

18.
Adding new taxa to morphological phylogenetic analyses without substantially revising the set of included characters is a common practice, with drawbacks (undersampling of relevant characters) and potential benefits (character selection is not biased by preconceptions over the affinities of the ‘retrofitted’ taxon). Retrofitting turtles (Testudines) and other taxa to recent reptile phylogenies consistently places turtles with anapsid‐grade parareptiles (especially Eunotosaurus and/or pareiasauromorphs), under both Bayesian and parsimony analyses. This morphological evidence for turtle–parareptile affinities appears to contradict the robust genomic evidence that extant (living) turtles are nested within diapsids as sister to extant archosaurs (birds and crocodilians). However, the morphological data are almost equally consistent with a turtle–archosaur clade: enforcing this molecular scaffold onto the morphological data does not greatly increase tree length (parsimony) or reduce likelihood (Bayesian inference). Moreover, under certain analytic conditions, Eunotosaurus groups with turtles and thus also falls within the turtle–archosaur clade. This result raises the possibility that turtles could simultaneously be most closely related to a taxon traditionally considered a parareptile (Eunotosaurus) and still have archosaurs as their closest extant sister group.  相似文献   

19.
The basis for a preliminary analysis of the relationships within the monophyletic Diphyllidea is outlined. Information on morphological characters and their interpretation within a phylogenetic context are presented. A cladistic analysis at the species level was conducted based on a matrix of 21 morphological characters. Character polarity was determined by taxonomic outgroup analysis relative to the basal orders, Pseudophyllidea and Haplobothriidea. The phylogeny for the diphyllideans was found to be poorly resolved based on characters currently available for evaluation. Computer assisted cladistic analysis found three equally parsimonious trees with a consistency index of 0.54. The topology of these trees shows that Ditrachybothridium macrocephalum is the basal taxon and the putative sister group for species of Echinobothrium; Macrobothridium rhynchobati is grouped among species of Echinobothrium. If the classification is to be consistent with this tree, M. rhynchobati should be included in the genus Echinobothrium. This observation should be carefully examined, considering the relative paucity of useful morphological characters currently available for this group.  相似文献   

20.
《Geobios》1986,19(2):231-243
The Lower Cretaceous (Albian) Griman Creek Fm. at Lightning Ridge, New South Wales, Australia, has yielded seven partial femora of hypsilophodontid ornithopods. Six of these femora represent a member of the hypsilophodont group of the Hypsilophodontidae. Similarities of the structure of the medial condyle and popliteal region indicate reference to Fulgurotherium australe. The seventh femur appears to derive from a second, unnamed hypsilophodontid species. These specimens confirm the presence of hypsilophodontids in Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号