首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this study was to assess the protective capacity of an ice hockey goaltender helmet for three concussive impact events. A helmeted and unhelmeted headform was used to test three common impact events in ice hockey (fall, puck impacts and shoulder collisions). Peak linear acceleration, rotational acceleration and rotational velocity as well as maximum principal strain and von Mises stress were measured for each impact condition. The results demonstrated the tested ice hockey goaltender helmet was well designed to manage fall and puck impacts but does not consistently protect against shoulder collisions and an opportunity may exist to improve helmet designs to better protect goaltenders from shoulder collisions.  相似文献   

2.
Concussion in American football is a prevalent concern. Research has been conducted examining frequencies, location, and thresholds for concussion from impacts. Little work has been done examining how impact location may affect risk of concussive injury. The purpose of this research was to examine how impact site on the helmet and type of impact, affects the risk of concussive injury as quantified using finite element modelling of the human head and brain. A linear impactor was used to impact a helmeted Hybrid III headform in several locations and using centric and non-centric impact vectors. The resulting dynamic response was used as input for the Wayne State Brain Injury Model to determine the risk of concussive injury by utilizing maximum principal strain as the predictive variable. The results demonstrated that impacts that occur primarily to the side of the head resulted in higher magnitudes of strain in the grey and white matter, as well as the brain stem. Finally, commonly worn American football helmets were used in this research and significant risk of injury was incurred for all impacts. These results suggest that improvements in American football helmets are warranted, in particular for impacts to the side of the helmet.  相似文献   

3.
The purpose of this research was to examine how four different types of baseball helmets perform for baseball impacts when performance was measured using variables associated with concussion. A helmeted Hybrid III headform was impacted by a baseball, and linear and rotational acceleration as well as maximum principal strain were measured for each impact condition. The method was successful in distinguishing differences in design characteristics between the baseball helmets. The results indicated that there is a high risk of concussive injury from being hit by a ball regardless of helmet worn.  相似文献   

4.
Football helmet certification tests are performed without a facemask attached to the helmet; however, the facemask is expected to contribute substantially to the structure and dynamics of the helmet through the effects of added mass and added stiffness. Facemasks may increase the peak acceleration and severity index; therefore, as-used helmets may not mitigate head impacts as effectively as certification tests indicate. Furthermore, the effect is expected to depend on the helmet design as well as the orientation and speed of the impact. This study examined the influence of the facemask on impact behavior in a NOCSAE-style linear drop test and the interactions with location, velocity, and helmet model. Increases in peak acceleration and severity index of up to 36% were observed when helmets were tested with the facemask.  相似文献   

5.
The results of a computational study of a helmeted human head are presented in this paper. The focus of the work is to study the effects of helmet pad materials on the level of acceleration, inflicted pressure and shear stress in a human brain model subjected to a ballistic impact. Four different closed cell foam materials, made of expanded polystyrene and expanded polypropylene, are examined for the padding material. It is assumed that bullets cannot penetrate the helmet shell. Finite element modelling of the helmet, padding system, head and head components is used for this dynamic nonlinear analysis. Appropriate contacts and conditions are applied between the different components of the head, as well as between the head and the pads, and the pads and the helmet. Based on the results of simulations in this work, it is concluded that the stiffness of the foam has a prominent role in reducing the level of the transferred load to the brain. A pad that is less stiff is more efficient in absorbing the impact energy and reducing the sudden acceleration of the head and consequently lowers the brain injury level. Using the pad with the least stiffness, the influence of the angle of impacts as well as the locations of the ballistic strike is studied.  相似文献   

6.
Prediction of traumatic and mild traumatic brain injury is an important factor in managing their prevention. Currently, the prediction of these injuries is limited to peak linear and angular acceleration loading curves derived from laboratory reconstructions. However it remains unclear as to what aspect of these loading curves contributes to brain tissue damage. This research uses the University College Dublin Brain Trauma Model (UCDBTM) to analyse three distinct loading curve shapes meant to represent different helmet loading scenarios. The loading curves were applied independently in each axis of linear and angular acceleration and their effect on currently used predictors of TBI and mTBI was examined. Loading curve shape A had a late time to peak, B an early time to peak and C had a consistent plateau. The areas under the curve for all three loading curve shapes were identical. The results indicate that loading curve A produced consistently higher maximum principal strains and Von Mises stress than the other two loading curve types. Loading curve C consistently produced the lowest values of maximum principal strain and Von Mises stress, with loading curve B being lowest in only 2 cases. The areas of peak Von Mises stress and Principal strain also varied depending on loading curve shape and acceleration input.  相似文献   

7.
Abstract

Sporting helmets with linear attenuating strategies are proficient at reducing the risk of traumatic brain injury. However, the continued high incidence of concussion in American football, has led researchers to investigate novel helmet liner strategies. These strategies typically supplement existing technologies by adding or integrating head-helmet decoupling mechanisms. Decoupling strategies aim to redirect or redistribute impact force around the head, reducing impact energy transferred to the brain. This results in decreased brain tissue strain, which is beneficial in injury risk reduction due to the link between tissue strain and concussive injury.

The purpose of this study was to mathematically demonstrate the effect of ten cases, representing theoretical redirection and redistribution helmet liner strategies, on brain tissue strain resulting from impacts to the head. The kinematic response data from twenty head impacts collected in the laboratory was mathematically modified to represent the altered response of the ten different cases and used as input parameters to determine the effect on maximum principal strain (MPS) values, calculated using finite element modeling. The results showed that a reduced dominant coordinate component (contributes the greatest to resultant) of rotational acceleration decreased maximum principal strain in American football helmets. The study theoretically demonstrates that liner strategies, if applied correctly, can influence brain motion, reduce brain tissue strain, and could decrease injury risk in an American football helmet.  相似文献   

8.
The high incidence rate of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. The goal of this study was to validate a six degree of freedom (6DOF) measurement device with 12 single-axis accelerometers that uses a novel algorithm to compute linear and angular head accelerations for each axis of the head. The 6DOF device can be integrated into existing football helmets and is capable of wireless data transmission. A football helmet equipped with the 6DOF device was fitted to a Hybrid III head instrumented with a 9 accelerometer array. The helmet was impacted using a pneumatic linear impactor. Hybrid III head accelerations were compared with that of the 6DOF device. For all impacts, peak Hybrid III head accelerations ranged from 24 g to 176 g and 1,506 rad/s(2) to 14,431 rad/s(2). Average errors for peak linear and angular head acceleration were 1% ± 18% and 3% ± 24%, respectively. The average RMS error of the temporal response for each impact was 12.5 g and 907 rad/s(2).  相似文献   

9.
On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration.  相似文献   

10.
The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions – frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet–human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s?1 are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions.  相似文献   

11.
This paper evaluates the effects of topology and relative density of helmet lattice liners on mitigating Traumatic Brain Injury (TBI). Finite Element (FE) models of new lattice liners with prismatic and tetrahedral topologies were developed. A typical frontal head impact in motorcycle accidents was simulated, and linear and rotational accelerations of the head were recorded. A high-fidelity FE model of TBI was loaded with the accelerations to predict the brain response during the accident. The results show that prismatic lattices have better performance in preventing TBI than tetrahedral lattices and EPS that is typically used in helmets. Moreover, varying the cell size through the thickness of the liner improves its performance, but this effect was marginal. The relative density also has a significant effect, with lattices with lower relative densities providing better protection. Across different lattices studied here, the prismatic lattice with a relative density of 6% had the best performance and reduced the peak linear and rotational accelerations, Head Injury Criterion (HIC), brain strain and strain rate by 48%, 37%, 49%, 32% and 65% respectively, compared to the EPS liner. These results can be used to guide the design of lattice helmet liners for better mitigation of TBI.  相似文献   

12.
Concussion, or mild traumatic brain injury, occurs in many activities, mostly as a result of the head being accelerated. A comprehensive study has been conducted to understand better the mechanics of the impacts associated with concussion in American football. This study involves a sequence of techniques to analyse and reconstruct many different head impact scenarios. It is important to understand the validity and accuracy of these techniques in order to be able to use the results of the study to improve helmets and helmet standards. Two major categories of potential errors have been investigated. The first category concerns error sources specific to the use of crash test dummy instrumentation (accelerometers) and associated data processing techniques. These are relied upon to establish both linear and angular head acceleration responses. The second category concerns the use of broadcast video data and crash test dummy head-neck-torso systems. These are used to replicate the complex head impact scenarios of whole body collisions that occur on the football field between two living human beings. All acceleration measurement and processing techniques were based on well-established practices and standards. These proved to be reliable and reproducible. Potential errors in the linear accelerations due to electrical or mechanical noise did not exceed 2% for the three different noise sources investigated. Potential errors in the angular accelerations due to noise could be as high as 6.7%, due to error accumulation of multiple linear acceleration measurements. The potential error in the relative impact velocity between colliding heads could be as high as 11%, and was found to be the largest error source in the sequence of techniques to reconstruct the game impacts. Full-scale experiments with complete crash test dummies in staged head impacts showed maximum errors of 17% for resultant linear accelerations and 25% for resultant angular accelerations.  相似文献   

13.
American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.  相似文献   

14.
A parametric study was conducted to delineate the efficacy of personal protective equipment (PPE), such as ballistic faceshields and advanced combat helmets, in the case of a blast. The propagations of blast waves and their interactions with an unprotected head, a helmeted one, and a fully protected finite element head model (FEHM) were modeled. The biomechanical parameters of the brain were recorded when the FEHM was exposed to shockwaves from the front, back, top, and bottom. The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study.  相似文献   

15.
Playgrounds surface test standards have been introduced to reduce the number of fatal and severe injuries. However, these test standards have several simplifications to make it practical, robust and cost-effective, such as the head is represented with a hemisphere, only the linear kinematics is evaluated and the body is excluded. Little is known about how these simplifications may influence the test results. The objective of this study was to evaluate the effect of these simplifications on global head kinematics and head injury prediction for different age groups. The finite element human body model PIPER was used and scaled to seven different age groups from 1.5 up to 18 years old, and each model was impacted at three different playground surface stiffness and three head impact locations. All simulations were performed in pairs, including and excluding the body. Linear kinematics and skull bone stress showed small influence if excluding the body while head angular kinematics and brain tissue strain were underestimated by the same simplification. The predicted performance of the three different playground surface materials, in terms of head angular kinematics and brain tissue strain, was also altered when including the body. A body and biofidelic neck need to be included, together with suitable head angular kinematics based injury thresholds, in future physical or virtual playground surface test standards to better prevent brain injuries.  相似文献   

16.
Specific types of operator activity make it necessary to wear a helmet protecting the head against various physical factors. Wearing a heavy helmet for a long time may affect the quality of operator activity when the operator is exposed to alternating G loads. Studies have been performed using a dynamic model of a vehicle subjected to considerable alternating G loads. Crash test dummies have been used to test a system protecting the cervical region of the spinal column. The effects of accelerations, vibrations, and the time of wearing helmets with different weights on the functional state and operator performance have been studied. Data on the effects of helmet weight on some physiological, psychological, and biomechanical reactions of human operators are reported. Some relationships have been found that have practical implications for the functional improvement of the operator component of vehicle operation.  相似文献   

17.
The objective of the test program was to study the effect of parametric changes in helmet inertial properties on the biodynamic response of human volunteers subjected to +Gz impact accelerations. Test data was used to drive a computer model (DYNAMAN) to estimate the loads and torques in the neck during impact. Currently, only seven of eleven test cells with variations in the inertial properties of the helmet along the x-axis of the head have been analyzed. Preliminary data analysis indicates that the biodynamic response of the head under the tested conditions is slightly more sensitive to the moment of inertia of the helmet than its weight alone even though both variables showed a general trend for the head accelerations (linear and angular) to increase. It has been shown that the model can give good estimates of the compression loads in the neck, but that the torque estimates will be low, possibly by a factor of three. Further refinements of the neck joint parameters in the model will be required in order to increase the motion of the head segment during impact acceleration and will be done prior to completing the remaining test cell analysis. Finally, all the test data will be evaluated to determine if the current interim head criteria require modification.  相似文献   

18.
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave–head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head–helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.  相似文献   

19.
In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.  相似文献   

20.
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号