首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a computational model of tissue growth under interstitial perfusion inside a tissue engineering bioreactor. The model accounts both for the cell population dynamics, using a model based on cellular automata, and for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Lattice-Boltzmann equation and the convection-diffusion equation. The conditions of static culture versus perfused culture were compared, by including the population dynamics along with oxygen diffusion, convective transport and consumption. The model is able to deal with arbitrary complex geometries of the spatial domain; in the present work, the domain modeled was the void space of a porous scaffold for tissue-engineered cartilage. The cell population dynamics algorithm provided results which qualitatively resembled population dynamics patterns observed in experimental studies, and these results were in good quantitative agreement with previous computational studies. Simulation of oxygen transport and consumption showed the fundamental contribution of convective transport in maintaining a high level of oxygen concentration in the whole spatial domain of the scaffold. The model was designed with the aim to be computationally efficient and easily expandable, i.e. to allow straightforward implementability of further models of complex biological phenomena of increasing scientific interest in tissue engineering, such as chemotaxis, extracellular matrix deposition and effect of mechanical stimulation.  相似文献   

2.
The paper presents a transient, continuum, two-phase model of the tissue engineering in fibrous scaffolds, including transport equations for the flowing culture medium, nutrient and cell concentration with transverse and in-plane diffusion and cell migration, a novel feature of local in-plane transport across a phenomenological pore and innovative layer-by-layer cell filling approach. The model is successfully validated for the smooth muscle cell tissue engineering of a vascular graft using crosslinked, electrospun gelatin fiber scaffolds for both static and dynamic cell culture, the latter in a dynamic bioreactor with a rotating shaft on which the tubular scaffold is attached. Parametric studies evaluate the impact of the scaffold microstructure, cell dynamics, oxygen transport, and static or dynamic conditions on the rate and extent of cell proliferation and depth of oxygen accessibility. An optimized scaffold of 75% dry porosity is proposed that can be tissue engineered into a viable and still fully oxygenated graft of the tunica media of the coronary artery within 2 days in the dynamic bioreactor. Such scaffold also matches the mechanical properties of the tunica media of the human coronary artery and the suture retention strength of a saphenous vein, often used as a coronary artery graft.  相似文献   

3.
Recently developed perfusion micro-bioreactors offer the promise of more physiologic in vitro systems for tissue engineering. Successful application of such bioreactors will require a method to characterize the bioreactor environment required to elicit desired cell function. We present a mathematical model to describe nutrient/growth factor transport and cell growth inside a microchannel bioreactor. Using the model, we first show that the nature of spatial gradients in nutrient concentration can be controlled by both design and operating conditions and are a strong function of cell uptake rates. Next, we extend our model to investigate the spatial distributions of cell-secreted soluble autocrine/paracrine growth factors in the bioreactor. We show that the convective transport associated with the continuous cell culture and possible media recirculation can significantly alter the concentration distribution of the soluble signaling molecules as compared to static culture experiments and hence needs special attention when adapting static culture protocols for the bioreactor. Further, using an unsteady state model, we find that spatial gradients in nutrient/growth factor concentrations can bring about spatial variations in the cell density distribution inside the bioreactor, which can result in lowered working volume of the bioreactor. Finally, we show that the nutrient and spatial limitations can dramatically affect the composition of a co-cultured cell population. Our results are significant for the development, design, and optimization of novel micro-channel systems for tissue engineering.  相似文献   

4.
Liu R  Sun W  Liu CZ 《Biotechnology progress》2011,27(6):1661-1671
A two-dimensional axisymmetric computational fluid dynamics (CFD) model based on a porous media model and a discrete population balance model was established to investigate the hydrodynamics and mass transfer behavior in an airlift bioreactor for hairy root culture.During the hairy root culture of Echinacea purpurea, liquid and gas velocity, gas holdup, mass transfer rate, as well as oxygen concentration distribution in the airlift bioreactor were simulated by this CFD model. Simulative results indicated that liquid flow and turbulence played a dominant role in oxygen mass transfer in the growth domain of the hairy root culture. The dissolved oxygen concentration in the hairy root clump increased from the bottom to the top of the bioreactor cultured with the hairy roots, which was verified by the experimental detection of dissolved oxygen concentration in the hairy root clump. This methodology provided insight understanding on the complex system of hairy root culture and will help to eventually guide the bioreactor design and process intensification of large-scale hairy root culture.  相似文献   

5.
In this study, transport characteristics in flow-through and parallel-flow bioreactors used in tissue engineering were simulated using computational fluid dynamics. To study nutrient distribution and consumption by smooth muscle cells colonizing the 100 mm diameter and 2-mm thick scaffold, effective diffusivity of glucose was experimentally determined using a two-chambered setup. Three different concentrations of chitosan-gelatin scaffolds were prepared by freezing at -80°C followed by lyophilization. Experiments were performed in both bioreactors to measure pressure drop at different flow rates. At low flow rates, experimental results were in agreement with the simulation results for both bioreactors. However, increase in flow rate beyond 5 mL/min in flow-through bioreactor showed channeling at the circumference resulting in lower pressure drop relative to simulation results. The Peclet number inside the scaffold indicated nutrient distribution within the flow-through bioreactor to be convection-dependent, whereas the parallel-flow bioreactor was diffusion-dependent. Three alternative design modifications to the parallel-flow were made by (i) introducing an additional inlet and an outlet, (ii) changing channel position, and (iii) changing the hold-up volume. Simulation studies were performed to assess the effect of scaffold thickness, cell densities, and permeability. These new designs improved nutrient distribution for 2 mm scaffolds; however, parallel-flow configuration was found to be unsuitable for scaffolds more than 4-mm thick, especially at low porosities as tissues regenerate. Furthermore, operable flow rate in flow-through bioreactors is constrained by the mechanical strength of the scaffold. In summary, this study showed limitations and differences between flow-through and parallel-flow bioreactors used in tissue engineering.  相似文献   

6.
To provide theoretical guidance for the design and in vitro cultivation of bioartificial tissues, we have developed a multiscale computational model that can describe the complex interplay between cell population and mass transport dynamics that governs the growth of tissues in three-dimensional scaffolds. The model has three components: a transient partial differential equation for the simultaneous diffusion and consumption of a limiting nutrient; a cellular automaton describing cell migration, proliferation, and collision; and equations that quantify how the varying nutrient concentration modulates cell division and migration. The hybrid discrete-continuous model was parallelized and solved on a distributed-memory multicomputer to study how transport limitations affect tissue regeneration rates under conditions encountered in typical bioreactors. Simulation results show that the severity of transport limitations can be estimated by the magnitude of two dimensionless groups: the Thiele modulus and the Biot number. Key parameters including the initial seeding mode, cell migration speed, and the hydrodynamic conditions in the bioreactor are shown to affect not only the overall rate, but also the pattern of tissue growth. This study lays the groundwork for more comprehensive models that can handle mixed cell cultures, multiple nutrients and growth factors, and other cellular processes, such as cell death.  相似文献   

7.
The main challenge in engineered cartilage consists in understanding and controlling the growth process towards a functional tissue. Mathematical and computational modelling can help in the optimal design of the bioreactor configuration and in a quantitative understanding of important culture parameters. In this work, we present a multiphysics computational model for the prediction of cartilage tissue growth in an interstitial perfusion bioreactor. The model consists of two separate sub-models, one two-dimensional (2D) sub-model and one three-dimensional (3D) sub-model, which are coupled between each other. These sub-models account both for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Navier–Stokes equation, the mass transport equation and the biomass growth. The biomass, assumed as a phase comprising cells and the synthesised extracellular matrix, has been modelled by using a moving boundary approach. In particular, the boundary at the fluid–biomass interface is moving with a velocity depending from the local oxygen concentration and viscous stress. In this work, we show that all parameters predicted, such as oxygen concentration and wall shear stress, by the 2D sub-model with respect to the ones predicted by the 3D sub-model are systematically overestimated and thus the tissue growth, which directly depends on these parameters. This implies that further predictive models for tissue growth should take into account of the three dimensionality of the problem for any scaffold microarchitecture.  相似文献   

8.
We present a combined macro-scale/micro-scale computational approach to quantify oxygen transport and flow-mediated shear stress to human chondrocytes cultured in three-dimensional scaffolds in a perfusion bioreactor system. A macro-scale model was developed to assess the influence of the bioreactor design and to identify the proper boundary conditions for the micro-scale model. The micro-scale model based on a micro-computed tomography (microCT) reconstruction of a poly(ethylene glycol terephthalate)/poly(butylene terephthalate) (PEGT/PBT) foam scaffold, was developed to assess the influence of the scaffold micro-architecture on local shear stress and oxygen levels within the scaffold pores. Experiments were performed to derive specific oxygen consumption rates for constructs perfused under flow rates of 0.3 and 0.03 ml min(-1). While macro-scale and micro-scale models predicted similar average oxygen levels at different depths within the scaffold, microCT models revealed small local oxygen variations within the scaffold micro-architecture. The combined macro-scale/micro-scale approach indicated that 0.3 ml min(-1), which subjected 95% of the cells to less than 6.3 mPa shear, would maintain the oxygen supply throughout the scaffold above anoxic levels (>1%), with 99.5% of the scaffold supplied with 8-2% O(2). Alternatively, at 0.03 ml min(-1), the macro-scale model predicted 6% of the cells would be supplied with 0.5-1% O(2), although this region of cells was confined to the periphery of the scaffold. Together with local variations predicted by the micro-scale model, the simulations underline that in the current model system, reducing the flow below 0.03 ml min(-1) would likely have dire consequences on cell viability to pronounced regions within the engineered construct. The presented approach provides a sensitive tool to aid efficient bioreactor optimization and scaffold design.  相似文献   

9.
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly‐L ‐lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre‐requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection‐diffusion‐attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large‐scale bioreactors. Biotechnol. Bioeng. 2013; 110: 1221–1230. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3-D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3-D scaffolds have not been fully investigated. In this study, experimental results from a 3-D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3-D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 micromol/10(6) cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher Y(L/G) in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering.  相似文献   

11.
The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth.  相似文献   

12.
A steady-state model of oxygen distribution in a cardiac tissue construct with a parallel channel array was developed and solved for a set of parameters using the finite element method and commercial software (FEMLAB). The effects of an oxygen carrier [Oxygent; 32% volume perfluorocarbon (PFC) emulsion] were evaluated. The parallel channel array mimics the in vivo capillary tissue bed, and the PFC emulsion has a similar role as the natural oxygen carrier hemoglobin in increasing total oxygen content. The construct was divided into an array of cylindrical domains with a channel in the center and tissue space surrounding the channel. In the channel, the main modes of mass transfer were axial convection and radial diffusion. In the tissue region, mass transfer was by axial and radial diffusion, and the consumption of oxygen was by Michaelis-Menten kinetics. Neumann boundary conditions were imposed at the channel centerline and the half distance between the domains. Supplementation of culture medium by PFC emulsion improved mass transport by increasing convective term and effective diffusivity of culture medium. The model was first implemented for the following set of experimentally obtained parameters: construct thickness of 0.2 cm, channel diameter of 330 mum, channel center-to-center spacingof 700 microm, and average linear velocity per channel of 0.049 cm/s, in conjunction with PFC supplemented and unsupplemented culture medium. Subsequently, the model was used to define favorable scaffold geometry and flow conditions necessary to cultivate cardiac constructs of high cell density (10(8) cells/ml) and clinically relevant thickness (0.5 cm). In future work, the model can be utilized as a tool for optimization of scaffold geometry and flow conditions.  相似文献   

13.
Bioreactors are crucial tools for the manufacturing of living cell‐based tissue engineered products. However, to reach the market successfully, higher degrees of automation, as well as a decreased footprint still need to be reached. In this study, the use of a benchtop bioreactor for in vitro perfusion culture of scaffold‐based tissue engineering constructs is assessed. A low‐footprint benchtop bioreactor system is designed, comprising a single‐use fluidic components and a bioreactor housing. The bioreactor is operated using an in‐house developed program and the culture environment is monitored by specifically designed sensor ports. A gas‐exchange module is incorporated allowing for heat and mass transfers. Titanium‐based scaffolds are seeded with human periosteum‐derived cells and cultured up to 3 weeks. The benchtop bioreactor constructs are compared to benchmark perfusion systems. Live/Dead stainings, DNA quantifications, glucose consumption, and lactate production assays confirm that the constructs cultured in the benchtop bioreactor grew similarly to the benchmark systems. Manual regulation of the system set points enabled efficient alteration of the culture environment in terms of temperature, pH, and dissolved oxygen. This study provides the necessary basis for the development of low‐footprint, automated, benchtop perfusion bioreactors and enables the implementation of active environment control.  相似文献   

14.
In bone tissue engineering experiments, fluid-induced shear stress is able to stimulate cells to produce mineralised extracellular matrix (ECM). The application of shear stress on seeded cells can for example be achieved through bioreactors that perfuse medium through porous scaffolds. The generated mechanical environment (i.e. wall shear stress: WSS) within the scaffolds is complex due to the complexity of scaffold geometry. This complexity has so far prevented setting an optimal loading (i.e. flow rate) of the bioreactor to achieve an optimal distribution of WSS for stimulating cells to produce mineralised ECM. In this study, we demonstrate an approach combining computational fluid dynamics (CFD) and mechano-regulation theory to optimise flow rates of a perfusion bioreactor and various scaffold geometries (i.e. pore shape, porosity and pore diameter) in order to maximise shear stress induced mineralisation. The optimal flow rates, under which the highest fraction of scaffold surface area is subjected to a wall shear stress that induces mineralisation, are mainly dependent on the scaffold geometries. Nevertheless, the variation range of such optimal flow rates are within 0.5–5 mL/min (or in terms of fluid velocity: 0.166–1.66 mm/s), among different scaffolds. This approach can facilitate the determination of scaffold-dependent flow rates for bone tissue engineering experiments in vitro, avoiding performing a series of trial and error experiments.  相似文献   

15.
In tissue engineering, flow perfusion bioreactors can be used to enhance nutrient diffusion while mechanically stimulating cells to increase matrix production. The goal of this study was to design and validate a dynamic flow perfusion bioreactor for use with compliant scaffolds. Using a non-permanent staining technique, scaffold perfusion was verified for flow rates of 0.1-2.0 mL/min. Flow analysis revealed that steady, pulsatile and oscillatory flow profiles were effectively transferred from the pump to the scaffold. Compared to static culture, bioreactor culture of osteoblast-seeded collagen-GAG scaffolds led to a 27-34% decrease in cell number but stimulated an 800-1200% increase in the production of prostaglandin E(2), an early-stage bone formation marker. This validated flow perfusion bioreactor provides the basis for optimisation of bioreactor culture in tissue engineering applications.  相似文献   

16.
Novel tissue‐culture bioreactors employ flow‐induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three‐dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear‐stress values within the physiological range of those naturally sensed by vascular cells (1–10 dyne/cm2), and will thereby provide suitable conditions for vascular tissue‐engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell‐layer thicknesses of 0, 50, 75, 100, and 125 µm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear‐stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell‐layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in‐depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. Biotechnol. Bioeng. 2010; 105: 645–654. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.  相似文献   

18.
Batch cell cultures of a human-human hybridoma line in a convective flow dominant intercalated-spiral altetnate-dead-ended hollow fiber are compared with those using conventional axial-flow hollow fiber bioreactors and a stirred-tank bioreactor. Relatively short-term fed-batch and perfusion cell cultures were also employed for the intercalated-spiral bioreactor. When operating conditions of a batch intercalated-spiral bioreactor were properly chosen, the cell growth and substrate consumption paralleled that of a batch stirred-tank culture. The results verified the premise of the intercalated-spiral hollow fiber bioreactor that nutrient transport limitations can be eliminated when the convective flux through the extracapillary space is sufficiently high.(c) John Wiley & Sons, Inc.  相似文献   

19.
Principles of oxygen consumption, oxygen transport, suspension, and mixing are discussed in the context of propagating aggregates of plant tissue in liquid suspension bioreactors. Although micropropagated plants have a relatively low biological oxygen demand (BOD), the relatively large tissue size and localization of BOD in meristematic regions will typically result in oxygen mass transfer limitations in liquid culture. In contrast to the typical focus of bioreactor design on gas–liquid mass transfer, it is shown that media-solid mass transfer limitations limit oxygen available for aerobic plant tissue respiration. Approaches to improve oxygen availability through gas supplementation and bioreactor pressurization are discussed. The influence of media components on oxygen availability are also quantified for plant culture media. Experimental studies of polystyrene beads in suspension in a 30-l air-lift and stirred bioreactors are used to illustrate design principles for circulation and mixing. Potential limitations to the use of liquid suspension culture due to plant physiological requirements are acknowledged.  相似文献   

20.
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号