首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional (3D) multilayer model based on the skin physical structure is developed to investigate the transient thermal response of human skin subject to laser heating. The temperature distribution of the skin is modeled by the bioheat transfer equation, and the influence of laser heating is expressed as a source term where the strength of the source is a product of a Gaussian shaped incident irradiance, an exponentially shaped axial attenuation, and a time function. The water evaporation and diffusion is included in the model by adding two terms regarding the heat loss due to the evaporation and diffusion, where the rate of water evaporation is determined based on the theory of laminar boundary layer. Cryogen spray cooling (CSC) in laser therapy is studied, as well as its effect on the skin thermal response. The time-dependent equation is discretized using the finite difference method with the Crank-Nicholson scheme and the stability of the numerical method is analyzed. The large sparse linear system resulted from discretizing the governing partial differential equation is solved by a GMRES solver and the expected simulation results are obtained.  相似文献   

2.
This paper presents a hybrid finite element model for describing quantitatively the thermal responses of skin tissue under laser irradiation. The model is based on the boundary integral-based finite element method and the Pennes bioheat transfer equation. In this study, temporal discretization of the bioheat system is first performed and leads to the well-known modified Helmholtz equation. A radial basis function approach and the boundary integral based finite element method are employed to obtain particular and homogeneous solutions of the laser-tissue interaction problem. In the boundary integral based finite element formulation, two independent fields are assumed: intra-element field and frame field. The intra-element field is approximated through a linear combination of fundamental solutions at a number of source points outside the element domain. The frame temperature field is expressed in terms of nodal temperature and the corresponding shape function. Numerical examples are considered to verify and assess the proposed numerical model. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature and to identify the degree of burn injury due to laser heating.  相似文献   

3.
Light energy from a laser source that is delivered into body tissue via a fiber-optic probe with minimal invasiveness has been used to ablate solid tumors. This thermal coagulation process can be guided and monitored accurately by continuous magnetic resonance imaging (MRI) since the laser energy delivery system does not interfere with MRI. This report deals with mathematical modeling and analysis of laser coagulation of tissue. This model is intended for "real-time" analysis of magnetic resonance images obtained during the coagulation process to guide clinical treatment. A mathematical model is developed to simulate the thermal response of tissue to a laser light heating source. For fast simulation, an approximate solution of the thermal model is used to predict the dynamics of temperature distribution and tissue damage induced by a laser energy line source. The validity of these simulations is tested by comparison with MRI-based temperature data acquired from in vivo experiments in rabbits. The model-simulated temperature distribution and predicted lesion dynamics correspond closely with MRI-based data. These results demonstrate the potential for using this combination of fast modeling and MRI technologies during laser heating of tissue for online prediction of tumor lesion size during laser heating.  相似文献   

4.
A thermal therapy for cancer in skin tissue is numerically investigated using three bioheat conduction models, namely Pennes, thermal wave and dual-phase lag models. A laser is applied at the surface of the skin for cancer ablation, and the temperature and thermal damage distributions are predicted using the three bioheat models and two different modeling approaches of the laser effect. The first one is a prescribed surface heat flux, in which the tissue is assumed to be highly absorbent, while the second approach is a volumetric heat source, which is reasonable if the scattering and absorption skin effects are of similar magnitude. The finite volume method is applied to solve the governing bioheat equation. A parametric study is carried out to ascertain the effects of the thermophysical properties of the cancer on the thermal damage. The temperature distributions predicted by the three models exhibit significant differences, even though the temperature distributions are similar when the laser is turned off. The type of bioheat model has more influence on the predicted thermal damage than the type of modeling approach used for the laser. The phase lags of heat flux and temperature gradient have an important influence on the results, as well as the thermal conductivity of the cancer. In contrast, the uncertainty in the specific heat and blood perfusion rate has a minor influence on the thermal damage.  相似文献   

5.
6.
Barun VV  Ivanov AP 《Biofizika》2012,57(1):120-129
An analytical model is proposed to calculate heating of human skin cover under laser light action of photodynamic therapy. A photosensitizer of "Fotolon" is taken as an example. Temperatures of skin surface and of deep dermis regions are studied as a function of time under pulsed and stationary irradiation of skin surface at the wavelength of 665 nm corresponding to the maximum of the photosensitizer absorption band. It is shown that, under the action of a short light pulse, the photosensitizer can lead to an essential temperature rise of dermis due to a considerable increase in its absorption coefficient. However, this rise does not destruct tissue cells because of the short action. Under stationary irradiation, the photosensitizer concentration has a low effect on the temperature regime of tissue. This is related with the specific features in heating of the medium by red light, where the main thermal process in skin is heat transfer over tissue volume from epidermis having a substantially larger absorption coefficient than that of dermis in the said spectral range. The role of blood perfusion in dermis and its effect on the temperature regime of tissue are evaluated.  相似文献   

7.
An analytical model is proposed to calculate heating of human skin cover under laser light action of photodynamic therapy. A photosensitizer of «Fotolon» is taken as an example. Temperatures of skin surface and of deep dermis regions are studied as a function of time under pulsed and stationary irradiation of skin surface at the wavelength of 665 nm corresponding to the maximum of the photosensitizer absorption band. It is shown that, under the action of a short light pulse, the photosensitizer can lead to an essential temperature rise of dermis due to a considerable increase in its absorption coefficient. However, this rise does not destruct tissue cells because of the short action. Under stationary irradiation, the photosensitizer concentration has a low effect on the temperature regime of tissue. This is related with the specific features in heating of the medium by red light, where the main thermal process in skin is heat transfer over tissue volume from epidermis having a substantially larger absorption coefficient than that of dermis in the said spectral range. The role of blood perfusion in dermis and its effect on the temperature regime of tissue are evaluated.  相似文献   

8.
建立了描述温控加热方式下激光诱导肿瘤间质热疗过程中动态光热作用的二维圆柱坐标下的数学模型,采用基于网格的蒙特卡罗方法数值模拟热疗过程中激光能量在非均质生物组织内的传输过程,基于Pennes生物传热方程和Arrhen ius方程数值求解组织内的温度场和热损伤体积的变化。通过数值模拟的方法分析了激光波长、激光功率、温控范围等因素对激光诱导肿瘤间质热疗中热损伤体积的影响。数值模拟的结果表明,通过选择合适的治疗参数,可以得到各种不同大小的热疗区域。本文的结果和结论对于临床治疗方案的制定具有一定的理论指导意义。  相似文献   

9.
This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing applied to Stolwijk’s human thermal model. The main feature of the model is the division of the skin surface into three parts: a dry part, a wet part without water flow, and a wet part with water flow. The area ratio of each part is decided by a simple formula developed from a geometrical approach based on the shape of the Stolwijk’s human thermal model. At the same time, the convective heat transfer coefficient between the skin and the flowing water is determined experimentally. The proposed model is validated by a comparison with the results of human subject experiments under controlled and free shower conditions. The model predicts the mean skin temperature during shower fairly well both for controlled and free shower bathing styles.  相似文献   

10.
To test whether heat-sensitive receptors participate in the cutaneous vascular responses to direct heating, we monitored skin blood flow (SkBF; laser Doppler flowmetry) where the sensation of heat was induced either by local warming (T(Loc); Peltier cooling/heating unit) or by both direct warming and chemical stimulation of heat-sensitive nociceptors (capsaicin). In part I, topical capsaicin (0.075 or 0.025%) was applied to 12 cm(2) of skin 1 h before stepwise local warming of untreated and capsaicin-treated forearm skin. Pretreatment with 0.075% capsaicin cream shifted the SkBF/T(Loc) relationship to lower temperatures by an average of 6 +/- 0.8 degrees C (P < 0.05). In part II, we used a combination of topical capsaicin (0.025%) and local warming to evoke thermal sensation at one site and only local warming to evoke thermal sensation at a separate site. Cutaneous vasomotor responses were compared when the temperatures at these two sites were perceived to be the same. SkBF differed significantly between capsaicin and control sites when compared on the basis of actual temperatures, but that difference became insignificant when compared on the basis of the perceived temperatures. These data suggest heat-sensitive nociceptors are important in the cutaneous vasodilator response to local skin warming.  相似文献   

11.
Based on the analysis of clonogenic survival data for human colonic adenocarcinoma cells (WiDr) after a single heating, a new model is proposed to describe cell survival after hyperthermia quantitatively. The effects of heat are explained as heat-induced cell damage assuming a first-order (single-hit) and a second-order (cumulative damage) process. Thus cell survival at a specified temperature can be described by the linear-quadratic (LQ) model. The proposed model is based on an alternative definition of the (single) thermal dose, given as the (normalized) product of heating time and a specified nonlinear function of the increase in temperature (relative to a threshold temperature) to be interpreted as the thermal dose rate. In further analogy to the modeling of the effects of low-dose-rate radiation, an inherent capacity of the cells to repair sublethal damage is assumed, and these effects are quantified by the usual g factor measuring incomplete repair effects. The model defines thermal dose-response and isoeffect dose relationships, enabling a direct (i. e. single-step) analysis of the available thermal response data. Additionally, the analysis of our data based on heating times in the range from 0 to 360 min and temperatures from 41 to 46 degrees C and covering a broad spectrum of different densities of cells seeded for colony formation did not yield any evidence of the existence of a breaking point usually derived from Arrhenius plots based on the single-hit, multitarget model and the Arrhenius equation. The model includes no specific assumptions describing the development of thermotolerance, which can be assumed to be negligible under our experimental conditions. The proposed thermal dose-response model correlates satisfactorily with the in vitro survival data for WiDr adenocarcinoma cells.  相似文献   

12.
A bioheat transfer approach is proposed to study thermal damage in biological tissues caused by laser radiation. The laser light propagation in the tissue is first solved by using a robust seven-flux model in cylindrical coordinate system. The resulting spatial distribution of the absorbed laser energy is incorporated into the bioheat transfer equation for solving temperature response. Thermal damage to the tissue is assessed by the extent of denatured protein using a rate process equation. It is found that for the tissue studied, a significant protein denaturation process would take place when temperature exceeds about 53 degrees C. The effects of laser power, exposure time and beam size as well as the tissue absorption and scattering coefficients on the thermal damage process are examined and discussed. The laser conditions that cause irreversible damage to the tissue are also identified.  相似文献   

13.
Aim: A new procedure was developed to recover adenovirus 41 in small volumes (1 l) of water samples based on adsorption, elution and evaporation. Methods and Results: One litre of source water seeded with adenovirus 41 was adjusted to pH 3·5 and filtered using a large pore size (8·0 μm) negatively charged membrane filter (SCWP, 47 mm diameter, made of mixed‐cellulose esters). Then, the filter was eluted using 4 ml of 1·5% beef extract plus 0·75% glycerol (pH 9·0). The eluate was reconcentrated to 0·1 ml or less volumes through evaporation assisted with air flow and heating at 55°C. Recovery of adenovirus 41 reached 55% under tested conditions and reduced filtration time by 85% in contrast to the widely used small pore size filter (0·45 μm pore size, 47 mm diameter). Reconcentration by evaporation achieved approx. 86·8% recovery from source water in approx. 1 h at no cost. Conclusion: The virus concentration method developed in this study is simple and cost‐effective and can be used to efficiently recover adenovirus 41 from turbid water samples. Significance and Impact of the Study: The procedure developed can be applied to detect adenovirus 41 in source water within hours of sampling. In addition, this is the first application of evaporation to concentrate viruses in water samples.  相似文献   

14.
Thermal injury kinetics in electrical trauma.   总被引:4,自引:0,他引:4  
The distribution of electrical current and the resultant Joule heating in tissues of the human upper extremity for a worst-case hand-to-hand high-voltage electrical shock was modelled by solving the Bioheat equation using the finite element method. The model of the upper extremity included skin, fat, skeletal muscle, and bone. The parameter sets for these tissues included specific thermal and electrical properties and their respective tissue blood flow rates. The extent of heat mediated cellular injury was estimated by using a damage rate equation based on a single energy barrier chemical reaction model. No cellular injury was assumed to occur for temperatures less than 42 degrees C. This model was solved for the duration of Joule heating required to produce membrane damage in cells, termed the lethal time (of contact) for injury. LT's were determined for contact voltages ranging from 5 to 20 kV. For a 10,000 volt electrical shock LT's for skeletal muscle are predicted to be: 0.5 second in the distal forearm, 1.1 second in the mid-forearm, 1.2 second in the proximal elbow, and 2.0 seconds in the mid-arm. This analysis of the electrical shock provides useful insight into the mechanisms of resultant tissue damage and provides important performance guidelines for the development of safety devices.  相似文献   

15.
16.
Electrical injury mechanisms: dynamics of the thermal response   总被引:1,自引:0,他引:1  
The thermal response of the human upper extremity to large electric currents was examined using an axisymmetric unidimensional model containing bone, skeletal muscle, fat, and skin in coaxial cylindrical geometry. Appropriate thermal and electrical properties were assigned to each tissue, and the tissue response to joule heating was determined by a finite-element numerical technique. We found that when the tissues are electrically in parallel, skeletal muscle sustained the largest temperature rise and then heated adjacent tissues. Thus, when bone is not in series with other tissues, joule heating of bone is unlikely to be responsible for thermal damage to adjacent tissue. In addition, the effect of tissue perfusion on the thermal response was found to be essential for rapid cooling of the centrally located tissues.  相似文献   

17.
Using a simple isotope mixing model, we evaluated the relative proportion of water vapour generated by plant transpiration and by soil evaporation at two sites in the Amazon basin. Sampling was carried out at two different soil covers (forest and pasture), in a seasonal tropical rainforest at eastern Amazon where major deforestation is the result of land-use change, and compared to a less seasonal central Amazon forest. In both forests, vapour from transpiration was responsible for most, if not all, of the water vapour generated in the forest, while it could not be detected above the grassy pastures. Thus the canopy transpiration may be a major source of water vapour to the forest and perhaps to the atmosphere during the dry season. The results are discussed in relation to predictive models based on net radiation that usually are not able to distinguish between transpiration and evaporation.  相似文献   

18.
The aim of this study is to solve an inverse heat conduction problem to estimate the unknown time-dependent laser irradiance and thermal damage in laser-irradiated biological tissue from the temperature measurements taken within the tissue. The dual-phase-lag model is considered in the formulation of heat conduction equation. The inverse algorithm used in the study is based on the conjugate gradient method and the discrepancy principle. The effect of measurement errors and measurement locations on the estimation accuracy is also investigated. Two different examples of laser irradiance are discussed. Results show that the unknown laser irradiance and thermal damage can be predicted precisely by using the present approach for the test cases considered in this study.  相似文献   

19.
The thermal stability of peroxidase from leaves of the African oil palm tree Elaeis guineensis (AOPTP) at pH 3.0 was studied by differential scanning calorimetry (DSC), intrinsic fluorescence, CD and enzymatic assays. The spectral parameters as monitored by ellipticity changes in the far-UV CD spectrum of the enzyme as well as the increase in tryptophan intensity emission upon heating, together with changes in enzymatic activity with temperature were seen to be good complements to the highly sensitive but integral method of DSC. The data obtained in this investigation show that thermal denaturation of palm peroxidase is an irreversible process, under kinetic control, that can be satisfactorily described by the two-state kinetic scheme, N -->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.  相似文献   

20.
The authors have determined the coefficient of evaporative heat loss of the human body (he) by means of humidity steps in low air movement (Va less than or equal to 0,2 m/s). Such a determination requires a fully wetted skin and this implies therefore some loss of dripping sweat. The collection of this dripping sweat allows the determination of the total evaporation: this evaporation exists on the skin surface and around the drops during their fall from the skin to the oil pan where dripping sweat is collected. An estimation of this dripping sweat evaporation allows to assess the skin evaporation and, consequently, the evaporative coefficient he. In these experimental conditions: E = S - SNE - 0,0005 SNE (PsH2O - PaH2O) where E is the skin evaporative rate (g/h);S = total sweat rate (g/h);SNE = the nonevaporative sweat rate (g/h);PaH2O = the partial pressure of saturated water (at Ts) on skin (mb) and PaH2O the partial pressure of water vapor in ambient air (mb). The coefficient of evaporative heat loss in low air movement thus found, is 5,18 +/- 0,22 W/m2-mb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号