首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prediction of soft tissue aesthetics is important for achieving an optimal outcome in orthodontic treatment planning. Previously, applicable procedures were mainly restricted to 2-D profile prediction. In this study, a generic 3-D finite element (FE) model of the craniofacial soft and hard tissue was constructed, and individualisation of the generic model based on cone beam CT data and mathematical transformation was investigated. The result indicated that patient-specific 3-D facial FE model including different layers of soft tissue could be obtained through mathematical model transformation. Average deviation between the transformed model and the real reconstructed one was 0.47?±?0.77?mm and 0.75?±?0.84?mm in soft and hard tissue, respectively. With boundary condition defined according to treatment plan, such FE model could be used to predict the result of orthodontic treatment on facial soft tissue.  相似文献   

2.
Many heel pathologies including plantar heel pain may result from micro tears/trauma in the subcutaneous tissues, in which internal tissue deformation/stresses within the heel pad play an important role. Previously, many finite element models have been proposed to evaluate stresses inside the heel pad, but the majority of these models only focus on static loading boundary conditions. This study explored a dynamics modelling approach to the heel pad subjected to realistic impact loads during running. In this model, the inertial property and action of the body are described by a lumped parameter model, while the heel/shoe interactions are modelled using a viscoelastic heel pad model with contact properties. The impact force pattern, dynamic heel pad deformation and stress states predicted by the model were compared with published experimental data. Further parametrical studies revealed the model responses, in terms of internal stresses in the skin and fatty tissue, change nonlinearly when body dynamics changes. A reduction in foot's touchdown velocity resulted in a less severe impact landing and stress relief inside the heel pad, for example peak von-Mises stress in fatty tissue, was reduced by 11.3%. Applications of the model may be extendable to perform iterative analyses to further understand the complex relationships between body dynamics and stress distributions in the soft tissue of heel pad during running. This may open new opportunities to study the mechanical aetiology of plantar heel pain in runners.  相似文献   

3.
Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be checked together with the alignment. Finite element models of patients' lower extremities were developed to analyse the medial and lateral contact force distribution on the tibial insert. The distributions for four out of five patients were not balanced equally, even though the alignment angles were within a clinically acceptable range. Moreover, the distribution was improved by changing soft tissue release and ligament tightening for the specific case. Integration of the biomechanical modelling, image matching and finite element analysis techniques with the patient-specific properties and various dynamic loading would suggest a clinically relevant pre-operative planning for soft tissue balancing.  相似文献   

4.
5.
Detailed finite element modelling of needle insertions into soft tissue phantoms encounters difficulties of large deformations, high friction, contact loading and material failure. This paper demonstrates the use of cohesive elements in high-resolution finite element models to overcome some of the issues associated with these factors. Experiments are presented enabling extraction of the strain energy release rate during crack formation. Using data from these experiments, cohesive elements are calibrated and then implemented in models for validation of the needle insertion process. Successful modelling enables direct comparison of finite element and experimental force–displacement plots and energy distributions. Regions of crack creation, relaxation, cutting and full penetration are identified. By closing the loop between experiments and detailed finite element modelling, a methodology is established which will enable design modifications of a soft tissue probe that steers through complex mechanical interactions with the surrounding material.  相似文献   

6.
Pressure ulcers are a type of local soft tissue injury due to sustained mechanical loading and remain a common issue in patient care. People with spinal cord injury (SCI) are especially at risk of pressure ulcers due to impaired mobility and sensory perception. The development of load improving support structures relies on realistic tissue load evaluation e.g. using finite element analysis (FEA). FEA requires realistic subject-specific mechanical properties and geometries. This study focuses on the effect of geometry. MRI is used for the creation of geometrically accurate models of the human buttock for three able-bodied volunteers and three volunteers with SCI. The effect of geometry on observed internal tissue deformations for each subject is studied by comparing FEA findings for equivalent loading conditions. The large variations found between subjects confirms the importance of subject-specific FEA.  相似文献   

7.
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.  相似文献   

8.
Pelvic prolapse affects one woman in three of all ages combined and is quite common for more than 60% of patients over 60 years of age. The treatment of this pathological problem is one of the biggest challenges to the gynaecologist today. The rate of surgical intervention failure is quite significant. The recurrence of prolapse could be related to inadequate surgical technique or the pathology or/and biomechanical deficiency of the soft tissues. The modelling and simulation of the behaviour of the pelvic cavity could be a major tool for specific evaluation of pelvic status. A first stage of this model is being developed and reported. The computer-aided design model of the organs of the pelvic floor is created using magnetic resonance image data and the ligament boundary conditions are defined. A multi-organ geometric model is thus created and studied.  相似文献   

9.
The aim of this study was to investigate whether the predicted finite element (FE) stiffness of vertebral bone is altered when using images of preserved rather than fresh tissue to generate specimen-specific FE models. Fresh ovine vertebrae were used to represent embalmed (n = 3) and macerated dry-bone (n = 3) specimens and treated accordingly. Specimens were scanned pre- and post-treatment using micro-computed tomography. A constant threshold level derived from these images was used to calculate the respective bone volume fraction (BV/TV) from which the conversion factor validated for fresh tissue was used to determine material properties that were assigned to corresponding FE models. Results showed a definite change in the BV/TV between the fresh and the preserved bone. However, the changes in the predicted FE stiffness were not generally greater than the variations expected from assignment of loading and boundary conditions. In conclusion, images of preserved tissue can be used to generate FE models that are representative of fresh tissue with a tolerable level of error.  相似文献   

10.
Solids such as polymers, soft biological tissues display visco-hyperelastic, isochoric and finite deformation behaviour. The incompressibility constraint imposed severe restriction on the displacement field results in volumetric locking. Many techniques have been developed to address the issue such as reduced integration, mixed formulation, B-Bar and F-Bar methods, each of them with their own merits and demerits. In this work, we have developed a 3D finite element (hereby referred as J-Bar method) to counter volumetric locking in visco-hyperelastic solids. To validate the proposed J-Bar method, rheological characteristics of the human anterior cruciate ligament (ACL) were predicted and compared with the experimental results.  相似文献   

11.
12.
Cranio-maxillofacial (CMF) surgery operations are associated with rearrangement of facial hard and soft tissues, leading to dramatic changes in facial geometry. Often, correction of the aesthetical patient's appearance is the primary objective of the surgical intervention. Due to the complexity of the facial anatomy and the biomechanical behaviour of soft tissues, the result of the surgical impact cannot always be predicted on the basis of surgeon's intuition and experience alone. Computational modelling of soft tissue outcome using individual tomographic data and consistent numerical simulation of soft tissue mechanics can provide valuable information for surgeons during the planning stage. In this article, we present a general framework for computer-assisted planning of CMF surgery interventions that is based on the reconstruction of patient's anatomy from 3D computer tomography images and finite element analysis of soft tissue deformations. Examples from our clinical case studies that deal with the solution of direct and inverse surgical problems (i.e. soft tissue prediction, inverse implant shape design) demonstrate that the developed approach provides a useful tool for accurate prediction and optimisation of aesthetic surgery outcome.  相似文献   

13.
Many prediction guidelines exist in facial approximation for determining the soft-tissue features of the face, and the reliability of each is generally unknown. This study examines four published and commonly used soft-tissue prediction guidelines for estimating nose projection, two of which also estimate the position of the pronasale. The methods tested are those described by: 1) Gerasimov ([1971] The Face Finder; London: Hutchinson & Co.), using the distal third of the nasal bones and the nasal spine; 2) Krogman ([1962] The Human Skeleton in Forensic Medicine; Springfield: Charles C. Thomas), using the average soft-tissue depth at midphiltrum, plus three times the length of the nasal spine (and a variation of this technique: plus three times the distance of the tip of the nasal spine from the nasal aperture); 3) Prokopec and Ubelaker ([2002] Forensic Sci Commun 4:1-4), using the reflected profile line of the nasal aperture; and 4) George ([1987] J Forensic Sci 32:1305-1330), using a variation of the Goode method. Four identical hard-tissue tracings were made of 59 adult lateral head cephlograms (29 males, mean age 24, SD 10 years; 30 females, mean age 23, SD 5 years) on separate sheets of tracing paper. One soft-tissue tracing was also made for each radiograph. All tracings were marked with three identical reference points. Soft-tissue tracings were isolated from one of us (C.N.S.), who attempted under blind conditions to predict pronasale position and nose projection on the hard-tissue tracings, using the soft-tissue prediction guides above. Actual soft-tissue tracings were then compared to each of the predicted tracings, and differences in projection/pronasale position were measured. Results indicate that for nose projection, methods 3 and 4 performed well, while methods 1 and 2 performed poorly. Features which are most related to nose projection/pronasale are described in this paper, as are regression equations generated from these variables that predict pronasale/nose projection better than the traditional methods mentioned above. The results of this study are significant because they: 1) indicate that the popular facial approximation methods used to build the nose are inaccurate and produce incorrect nose anatomy; and 2) indicate that the new pronasale prediction methods developed here appear to have less error than traditional methods.  相似文献   

14.
Minimizing tissue damage and maintaining grasp stability are essential considerations in surgical grasper design. Most past and current research analyzing graspers used for tissue manipulation in minimally invasive surgery is based on in vitro experiments. Most previous work assessed tissue injury and grasp security by visual inspection; only a few studies have quantified it. The goal of the present work is to develop a methodology with which to compute tissue damage magnitude and grasp quality that is appropriate for a wide range of grasper–tissue interaction. Using finite element analysis (FEA), four graspers with varying radii of curvature and four graspers with different tooth sizes were analyzed while squeezing and pulling liver tissue. All graspers were treated as surgical steel with linear elastic material properties. Nonlinear material properties of tissue used in the FEA as well as damage evaluation were derived from previously reported in vivo experiments. Computed peak stress, integrated stress, and tissue damage were compared. Applied displacement is vertical and then horizontal to the tissue surface to represent grasp and retraction. A close examination of the contact status of each node within the grasper–tissue interaction surface was carried out to investigate grasp stability. The results indicate less tissue damage with increasing radius of curvature. A smooth wave pattern reduced tissue damage at the cost of inducing higher percentage of slipping area. This methodology may be useful for researchers to develop and test various designs of graspers. Also it could improve surgical simulator performance by reflecting more realistic tissue material properties and predicting tissue damage for the student.  相似文献   

15.
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.  相似文献   

16.
Abstract

Despite the general interest in aneurysm rupture prediction, the aneurysm formation has received limited attention. The goal of this study is to assess whether an aneurysm may be instigated in a healthy model of an aorta inflated by a supra-physiological pressure. The effect of two main aspects on numerical predictions has been explored: i) the geometric design and ii) the constitutive law adopted to represent the material properties. Firstly, higher values of wall stress and displacement magnitude were generated in the physiologic model compared to the cylindrical one when assigning the same material properties. Secondly, greater deformations are observed in the anisotropic model compared to the isotropic one.  相似文献   

17.
Objective: Develop a finite element (FE) model of a skull to perform biomechanical studies of maxillary expansion using bone anchors (BA).

Materials and methods: A skull model was developed and assigned material properties based on Hounsfield unit (HU) values of cone-beam computerized tomography (CBCT) images. A 3 mm diameter cylindrical BA was modelled and inserted in the palatal bone. A 4 mm transverse displacement was applied on the anchor. An evaluation on the effect on local stresses of BA implantation inclination angle was performed.

Results: Proper displacement results and strain–stress trends for the expansion process were present. Stress distribution patterns were similar as reported in the literature. No significant difference between BA inclination angles was found.

Conclusion: This work leads to a better understanding and prediction of craniofacial and maxillary bone remodelling during ME with BA treatments and is a first step towards the development of patient specific treatments.  相似文献   

18.
19.
Plantar pressure simulation driven by integrated 3D motion capture data, using both a finite element and a discrete element model, is compared for ten healthy and ten diabetic neuropathic subjects. The simulated peak pressure deviated on average between 16.7 and 34.2% from the measured peak pressure. The error in the position of the peak pressure was on average smaller than 4.2 cm. No method was more accurate than the other although statistical differences were found between them. Both techniques are thus complementary and useful tools to better understand the alteration of diabetic foot biomechanics during gait.  相似文献   

20.
Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting and assess seat-induced discomfort or to investigate the biomechanical factors involved. Here, we review the finite element models developed to investigate sitting discomfort or risk of pressure sores. Our study examines finite element models from twenty-seven papers, seventeen dedicated to assessing seating discomfort and ten dedicated to investigating pressure ulcers caused by prolonged sitting. The models’ mesh composition and material properties are found to differ widely. These models share a lack of validation and generally make little allowance for anthropometric diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号