首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The renal capsule is an important determinant of whole kidney volume/pressure relationships. To gain further insights into its possible role we examined the mechanical properties of the dog renal capsule using standard materials testing procedures. From each of four locations on the kidney surface, the following mechanical properties of the renal capsule were determined: elastic modulus (force/unit of cross-sectional area theoretically required to double the length of the specimen), tensile stiffness (force/unit width theoretically required to double the length of the specimen), ultimate strength (stress at time of fracture of the specimen), and maximum strain (percent strain at time of the fracture of the specimen). We found that the elastic modulus of the renal capsule from all capsular sites was substantially greater than values previously reported for dog aorta. The stiffness of the capsule covering the anterior-posterior surface of the kidney was found to be about 50% greater than the stiffness of the capsule covering the lateral and polar surfaces of the kidney. The ultimate strength of the anterior-posterior capsule was significantly greater than that of the lateral or polar capsule. This finding may explain the clinical observation that the spontaneous rupture of the renal capsule and parenchyma associated with the acute swelling of transplant rejection is confined almost exclusively to the lateral and polar portions of the renal capsule and cortex. The mean maximum strain at each capsular site was about 35%. This degree of circumferential expansion corresponds to about a doubling of kidney volume. Thus, this observation suggests that the renal capsule is at risk to undergo spontaneous rupture when renal volume increases of this magnitude are observed.  相似文献   

2.
Diabetes mellitus influences the function and morphology of the eye lens. The cataract is the second most common complication of diabetes mellitus on the eye. A hundred patients with cataract were examined in the prospective study. The patients were divided into two groups. The first group consisted of 50 patients with cataract who had not suffered from a system or local disease. The second group consisted of 50 patients with cataract and diabetes mellitus that had lasted for at least five years. In both groups the patients underwent identical cataract extra capsular extraction with intraocular PMMA (polymethylmethacrylate) lens implantation in camera posterior. The objective of this study was to compare the two groups of patients in order to find out the most common intraoperative or postoperative complications in diabetics. The most common postoperative complications in patients suffering from diabetes were inflammatory reactions and bleeding: postoperative keratopathy, uveitis anterior serous and uveitis anterior fibrinous with posterior sinechia and opacity of the posterior lens capsule as results. Postoperative visual acuity was worse in the patients in group II on the seventh day and six months after operation. It was diabetic retinopathy and its progression that caused deterioration of visual acuity. Diabetic retinopathy and its progression, as well as maculopathy were found only in patients who were not treated with photocoagulation before the operation.  相似文献   

3.
An in vitro culture model enabling posterior capsule opacification (PCO) to be investigated was developed and established by using low-melting-point (LMP)-agarose gel to support the capsular bag. After removal of the cornea from rodent and porcine eyeballs, the lens zonules were dissected. Whole lens explants were embedded into 2 % (37 °C) LMP-agarose gel solution. As performed routinely in cataract surgery, capsulotomy and lens fiber removal were carried out in the solidified LMP-agarose gel as sham cataract surgery. The LMP-agarose-gel-supported capsular bag/lens epithelial cell (CB-LEC) complexes were maintained in Dulbecco’s modified Eagle medium supplemented with 10 % fetal bovine serum in an anterior face-down position. The proliferation and migration of LECs into the posterior capsule were observed every 12 h by phase-contrast microscopy. Epithelial cells were observed at the central portion of the CB-LEC complexes after 56.57?±?16.56 h (n?=?7) and 106?±?14.03 h (n?=?6) of culture, for rodent and porcine lenses, respectively. The solidified gel allowed clear microscopic observations and whole-mount immunostaining evaluations of the whole area of the capsular bag. Histological examinations revealed the proliferation, migration, and transdifferentiation of LECs related to posterior capsule opacification. This new in vitro culture model provides experimental benefits by maintaining the natural contour of the capsule without implants inside or outside of the capsule. In addition, this model system allows pharmacological and histological evaluations of the cultured CB-LEC complexes without additional manipulations.  相似文献   

4.
There are over 1.9 million eye injuries per year in the United States, with blunt impacts the cause of approximately one-half of all civilian eye injuries. No previous experimental studies have investigated the effects of the extraocular muscles on the impact response of the eye. A spring-powered blunt impactor was used to determine the effects that the extraocular muscles have on the force–deflection and injury response of the eye to blunt trauma. A total of 10 dynamic impact tests were performed at 8.2±0.1 m/s on five human cadaver heads. With the extraocular muscles left intact, the average peak force was found to be 271±51 N at 7.5±0.9 mm posterior translation; with the muscles transected, the average peak force was 268±26 N at 7.6±1.3 mm of posterior translation. From the data available from this study, the peak impact force and overall amount of translation during the impact are not affected by the extraocular muscles. Additionally, from the data presented in this study, the eyes with the extraocular muscles left intact do not rupture with a different injury pattern or display an increased risk for rupture than the eyes with the extraocular muscles transected. Therefore, it is believed that the effect of the extraocular muscles is not sufficient to drastically alter the response of the eye under dynamic impact. This information is useful to characterize the boundary conditions that dictate the eye response from blunt impact and can be used to define the biofidelity requirements for the impact response of synthetic eyes.  相似文献   

5.
A better understanding of the three-dimensional mechanics of the pelvis, at the patient-specific level, may lead to improved treatment modalities. Although finite element (FE) models of the pelvis have been developed, validation by direct comparison with subject-specific strains has not been performed, and previous models used simplifying assumptions regarding geometry and material properties. The objectives of this study were to develop and validate a realistic FE model of the pelvis using subject-specific estimates of bone geometry, location-dependent cortical thickness and trabecular bone elastic modulus, and to assess the sensitivity of FE strain predictions to assumptions regarding cortical bone thickness as well as bone and cartilage material properties. A FE model of a cadaveric pelvis was created using subject-specific computed tomography image data. Acetabular loading was applied to the same pelvis using a prosthetic femoral stem in a fashion that could be easily duplicated in the computational model. Cortical bone strains were monitored with rosette strain gauges in ten locations on the left hemipelvis. FE strain predictions were compared directly with experimental results for validation. Overall, baseline FE predictions were strongly correlated with experimental results (r2=0.824), with a best-fit line that was not statistically different than the line y=x (experimental strains = FE predicted strains). Changes to cortical bone thickness and elastic modulus had the largest effect on cortical bone strains. The FE model was less sensitive to changes in all other parameters. The methods developed and validated in this study will be useful for creating and analyzing patient-specific FE models to better understand the biomechanics of the pelvis.  相似文献   

6.
Eye trauma results in 30,000 cases of blindness each year in the United States and is the second leading cause of monocular visual impairment. Eye injury is caused by a wide variety of projectile impacts and loading scenarios with common sources of trauma being motor vehicle crashes, military operations, and sporting impacts. For the current study, 79 experimental eye impact tests in literature were computationally modeled to analyze global and localized responses of the eye to a variety of blunt projectile impacts. Simulations were run with eight different projectiles (airsoft pellets, baseball, air gun pellets commonly known as BBs, blunt impactor, paintball, aluminum, foam, and plastic rods) to characterize effects of the projectile size, mass, geometry, material properties, and velocity on eye response. This study presents a matched comparison of experimental test results and computational model outputs including stress, energy, and pressure used to evaluate risk of eye injury. In general, the computational results agreed with the experimental results. A receiver operating characteristic curve analysis was used to establish the stress and pressure thresholds that best discriminated for globe rupture in the matched experimental tests. Globe rupture is predicted by the computational simulations when the corneoscleral stress exceeds 17.21 MPa or the vitreous pressure exceeds 1.01 MPa. Peak stresses were located at the apex of the cornea, the limbus, or the equator depending on the type of projectile impacting the eye. A multivariate correlation analysis revealed that area-normalized kinetic energy was the best single predictor of peak stress and pressure. Additional incorporation of a relative size parameter that relates the projectile area to the area of the eye reduced stress response variability and may be of importance in eye injury prediction. The modeling efforts shed light on the injury response of the eye when subjected to a variety of blunt projectile impacts and further validate the eye model's ability to predict globe rupture. Results of this study are relevant to the design and regulation of safety systems and equipment to protect against eye injury.  相似文献   

7.
The present study reports on the immunohistochemical distribution of S-100 antigen in non-nervous cell types within the human eye at light microscopy. In the cornea the antigen was confined to endothelial cells covering its posterior surface; the lens exhibited immunoreactivity restricted to the epithelial cells located beneath the anterior capsule. In the iris and ciliary body, S-100 was detected in stromal cells and epithelial cells of the pigmented inner layer in the former and inner epithelial cells bounding the posterior chamber in the latter.  相似文献   

8.
To compare bi-lateral shoulder EMG, active and short range glenohumeral stiffness, and examine its correlation to posterior capsule thickness (PCT) in collegiate baseball players. Surface and fine wire EMG was recorded on shoulder and scapular musculature during stiffness testing. Posterior capsule thickness was assessed separately using a diagnostic ultrasound. Serratus anterior EMG area and peak on the dominant arm was significantly greater compared to the non-dominant arm. The dominant arm had significantly greater active and short range glenohumeral stiffness compared to the non-dominant arm. Active glenohumeral stiffness was significantly correlated with PCT, however short range glenohumeral stiffness was not significantly correlated with PCT. Healthy collegiate baseball players present with adaptations of their stiffness regulation strategies. There were also correlations between stiffness and morphologic changes. Our results support the theory that PCT has an impact on the energy absorption capabilities of the shoulder during the deceleration phase of throwing. It also seems that tightening of the series elastic component within the posterior rotator cuff may be causing the increase in short range stiffness on the dominant arm.  相似文献   

9.

Purpose

To establish an optical section-assisted in vivo rabbit model for capsular bend and posterior capsule opacification (PCO) investigation.

Methods

A total of 10 rabbits underwent phacoemulsification surgery and intraocular lens (IOL) implantation. On the basis of the relationship between the anterior capsule and IOL, the rabbits were divided into complete overlap and incomplete overlap groups, in which six and four rabbits were included, respectively. The capsular bend optical sections were assessed using ultra-long scan depth optical coherence tomography (UL-OCT), and posterior capsule opacification was evaluated with slit lamp on postoperative day 3, 7, 14, and 28. In addition, histopathological section was used to verify the accuracy of capsular bend type captured by OCT in three rabbits.

Results

Based on the special animal model, six capsular bend types were observed, namely, anterior (A), middle (M), posterior (P), detachment (D), funnel (Fun) and furcate adhesion (Fur). On day 3, capsular bend began to form. On 14 days, the capsular bends were comprised of A, M and D types, which were almost maintained until day 28. Histopathological section findings were consistent with optical sectioning results. In the incomplete and complete groups, the earliest PCO within the optical zone were on day 7 and 28, respectively. The incomplete group exhibited higher incidence and faster PCO on day 7 (p = 0.038) and 14 (p = 0.002).

Conclusions

This animal model not only mimics capsular bend evolution and PCO processes but also produces OCT optical section images equivalent to and more repeatable than histopathology, thereby providing a promising method for the further investigations of PCO.  相似文献   

10.
The lens of 6-day-old normal mouse was implanted into the lentectomized eye of adult mouse to examine the effect of retina upon the growth of the implanted lens in vivo. The implanted lens grew normally and its transparency was kept for more than 5 months after implantation. The connection between the implanted lens and the ciliary part of the recipient iris was well established with the regeneration of zonular fibers from the recipient. In young lenses implanted reversely into adult eyes, the epithelial cells facing the retina elongated and a new epithelium was formed on the corneal side of the lens within 5 days. Young lenses implanted either in normal or reverse orientation into eyes from which the retina was previously removed did not grow. The cells of the original lens epithelium of these lenses were randomly accumulated beneath the posterior lens capsule, while the anterior portion of the implanted lenses became an epithelial structure without cell elongation. These results suggest that the growth of the implanted lens may be dependent on the retina of the adult eye.  相似文献   

11.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule.  相似文献   

12.
The biomechanics of the lens capsule of the eye is important both in physiologic processes such as accommodation and clinical treatments such as cataract surgery. Although the lens capsule experiences multiaxial stresses in vivo, there have been no measurements of its multiaxial properties or possible regional heterogeneities. Rather all prior mechanical data have come from 1-D pressure–volume or uniaxial force-length tests. Here, we report a new experimental approach to study in situ the regional, multiaxial mechanical behavior of the lens capsule. Moreover, we report multiaxial data suggesting that the porcine anterior lens capsule exhibits a typical nonlinear pseudoelastic behavior over finite strains, that the in situ state is pre-stressed multiaxially, and that the meridional and circumferential directions are principal directions of strain, which is nearly equibiaxial at the pole but less so towards the equator. Such data are fundamental to much needed constitutive formulations.  相似文献   

13.
Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.  相似文献   

14.
This study was performed to characterize the mechanical properties of the kidney capsular membrane at strain-rates associated with blunt abdominal trauma. Uniaxial quasi-static and dynamic tensile experiments were performed on fresh, unfrozen porcine and human renal capsules at deformation rates ranging from 0.0001 to 7 m/s (strain-rates of 0.005-250 s(-1)). Single stroke, dynamic tests were performed on samples of porcine renal capsule at strain-rates of 0.005 s(-1) (n = 33), 0.05 s(-1) (n = 17), 0.5 s(-1) (n = 38), 2 s(-1) (n = 10), 4 s(-1) (n = 10), 50 s(-1) (n = 21), 100 s(-1) (n = 18), 150 s(-1) (n = 17), 200 s(-1) (n = 10), and 250 s(-1) (n = 17). Due to limited availability of human tissues, only quasi-static tests were performed (0.005 s(-1), n = 25). Porcine renal capsule properties were found to match the material properties of human capsular tissue sufficiently well such that porcine tissue material can be used as a human test surrogate. The apparent elastic modulus and breaking stress of the porcine renal capsule were observed to increase significantly with increasing strain-rate (p < 0.01). Breaking strain was inversely related to strain-rate (p < 0.01). The effect of increasing strain-rate on material properties diminished appreciably at rates exceeding 150 s(-1). Empirically derived mathematical models of constitutive behavior were developed using a hyperelastic/viscoelastic Ogden formulation, as well as a Cowper-Symonds law material curve multiplication.  相似文献   

15.
Stress wave velocities in bovine patellar tendon.   总被引:1,自引:0,他引:1  
The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone-tendon-bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 +/- 52 m/s, 360 +/- 71 m/s, and 461 +/- 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.  相似文献   

16.
17.
To investigate potential heterogeneity and developmental changes in basement membranes during embryogenesis, we performed immunohistochemical analyses on lens capsules in chicken embryos of different ages using domain-specific monoclonal antibodies against type IV collagen. We found that the capsule of the newly formed lens stained uniformly with antibodies against this component of basement membranes, but with increasing age and differentiation of the lens cells the anterior lens capsule remained brightly fluorescent while staining of the posterior capsule became relatively much less intense. This antero- posterior gradient of anti-type IV collagen antibody reactivity demonstrated that developmentally-regulated changes can occur within a single, continuous basement membrane.  相似文献   

18.
The purpose of this study was to assess the effect of standardized anterior glenohumeral capsular lesions on axial humeral rotation in a full arc of glenohumeral elevation. Using a testing apparatus, the range of internal and external humeral rotation was assessed in an arc of glenohumeral elevation in the scapular plane with steps of 15 degrees in six isolated shoulder joint specimens. Cutting of the glenohumeral joint capsule 1 cm laterally from, and parallel to the glenoid rim was performed in seven steps of 1 cm till the anterior capsule was cut. Capsular lesions were made in three ways: from inferior, from superior and from the middle of the capsule. Anterior capsular lesions resulted in significant increase of external humeral rotation. This occurred particularly at 15-60 degrees glenohumeral elevation. Lesions of the inferior part of the capsule mainly increased external rotation at 30-60 degrees glenohumeral elevation, lesions of the superior part mainly in lower elevation angles and lesions of the middle more gradually in the range till 60 degrees of glenohumeral elevation. Cutting of the anterior glenohumeral capsule barely increased passive axial humeral rotation at elevation angles over 60 degrees. Above 60 degrees glenohumeral elevation, tightening of the inferior posterior glenohumeral joint capsule prevented both internal and, increasingly, external humeral rotation. From these observations it is concluded that increased external rotation correlates with progressive anterior capsular lesions, mainly below 60 degrees glenohumeral elevation. To assess anterior glenohumeral capsular lesions in patients, axial humeral rotation tests should probably not exceed 60 degrees glenohumeral elevation, i.e. 90 degrees thoracohumeral elevation.  相似文献   

19.
Microbial capsules are important for virulence, but their architecture and physical properties are poorly understood. The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide capsule that is necessary for virulence and is the target of protective antibody responses. To study the C. neoformans capsule we developed what we believe is a new approach whereby we probed the capsular elastic properties by applying forces using polystyrene beads manipulated with optical tweezers. This method allowed us to determine the Young's modulus for the capsule in various conditions that affect capsule growth. The results indicate that the Young's modulus of the capsule decreases with its size and increases with the Ca2+ concentration in solution. Also, capsular polysaccharide manifests an unexpected affinity for polystyrene beads, a property that may function in attachment to host cells and environmental structures. Bead probing with optical tweezers provides a new, nondestructive method that may have wide applicability for studying the effects of growth conditions, immune components, and drugs on capsular properties.  相似文献   

20.
The objective of this study was to determine the mechanical properties of the posterior region of the glenohumeral capsule in the directions perpendicular (transverse) and parallel (longitudinal) to the longitudinal axis of the posterior band of the inferior glenohumeral ligament. A punch was used to excise one transverse and one longitudinal tissue sample from the posterior capsule of 11 cadaveric shoulders. All tissue samples exhibited the typical nonlinear behavior reported for ligaments and tendons. Significant differences (p < 0.05) were detected between the transverse and longitudinal tissue samples for ultimate stress (1.5+/-1.4 and 4.9+/-2.9 MPa, respectively) and tangent modulus (10.3+/-6.6 and 31.5+/-12.7 MPa, respectively). No significant differences (p > 0.05) were observed between the ultimate strain (transverse: 22.3+/-12.5%, longitudinal: 22.8+/-11.1%) and strain energy density (transverse: 27.2+/-52.8 MPa, longitudinal: 67.5+/-88.2 MPa) of the transverse and longitudinal tissue samples. The ratio of the longitudinal to transverse moduli (4.8+/-4.2) was similar to that found for the axillary pouch (3.3+/-2.8) in a previous study. Thus, both the axillary pouch and the posterior capsule function to stabilize the joint multi-axially. Future analytical models of the glenohumeral joint should consider the properties of the posterior capsule in its transverse and longitudinal directions to fully describe the behavior of the glenohumeral capsule. These models will be clinically important by providing a more accurate representation of the intact capsule as well as simulated capsular injuries and surgical repair procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号