首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lower survival rates were observed for the implant placed in the anterior maxilla. The purpose of this study was to investigate the influence of different implant lengths on the stress distribution around osseointegrated implants under a static loading condition in the anterior maxilla using a three-dimensional finite element analysis. The diameter of 4.0 mm external type implants of different lengths (8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) was used in this study. The anterior maxilla was assumed to be D3 bone quality. All the material was assumed to be homogenous, isotropic and linearly elastic. The implant–bone interface was constructed using a rigid element for simulating the osseointegrated condition. Then, 176 N of static force was applied on the middle of the palatoincisal line angle of the abutment at a 120°angle to the long axis of abutment. The von Mises stress value was measured with an interval of 0.25 mm along the bone–implant interface. Incremental increase in implant length causes a gradual reduction of maximum and average von Mises stress at the labial portion within the implant. In the bone, higher stress was concentrated within cortical bone area and more distributed at the labial cortex, while cancellous bone showed relatively low stress concentration and even distribution. An increase in implant length reduced stress gradients at the cortical peri-implant region. Implant length affects the mechanisms of load transmission to the osseointegrated implant. On the basis of this study the biomechanical stress-based performance of implants placed in the anterior maxilla improves when using longer implants.  相似文献   

2.
Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2?mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7?MPa for trabecular bone while values ranging from 73 up to 118?MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21?MPa for trabecular bone while values at 150?MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2?MPa while von Mises stress values at 15?MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5?MPa, while von Mises stress values at 35?MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.  相似文献   

3.
The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).  相似文献   

4.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

5.
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading.  相似文献   

6.
Factors related to micromovements at bone-implant interface have been studied because they are considered adverse to osseointegration. Simplifications are commonly observed in these FEA evaluations. The aim of this study was to clarify the influence of FEA parameters (boundary conditions and bone properties) on the stress distribution in peri-implant bone tissue when micromovements are simulated in implants with different geometries. Three-dimensional models of an anterior section of the jaw with cylindrical or conical titanium implants (4.1 mm in width and 11 mm in length) were created. Micromovement (50, 150, or 250 μm) was applied to the implant. The FEA parameters studied were linear vs. non-linear analyses, isotropic vs. orthogonal anisotropic bone, friction coefficient (0.3) vs. frictionless bone-implant contact. Data from von Mises, shear, maximum, and minimum principal stresses in the peri-implant bone tissue were compared. Linear analyses presented a relevant increase of the stress values, regardless of the bone properties. Frictionless contact reduced the stress values in non-linear analysis. Isotropic bone presented lower stress than orthogonal anisotropic. Conical implants behave better, in regard to compressive stresses (minimum principal), than cylindrical ones, except for nonlinear analyses when micromovement of 150 and 250 μm were simulated. The stress values raised as the micromovement amplitude increased. Non-linear analysis, presence of frictional contact and orthogonal anisotropic bone, evaluated through maximum and minimum principal stress should be used as FEA parameters for implant-micromovement studies.  相似文献   

7.
The aim of this study was to analyze the influence of three different transmucosal heights of the abutments in single and multiple implant-supported prostheses through the finite element method. External hexagon implants, MicroUnit, and EsthetiCone abutments were scanned and placed in an edentulous maxillary model obtained from a tomography database. The simulations were divided into two groups: (1) one implant with 3.75 × 10 mm placed in the upper central incisor, simulating a single implant-supported fixed prosthesis with an EsthetiCone abutment; and (2) two implants with 3.75 × 10 mm placed in the upper lateral incisors with MicroUnit abutments, simulating a multiple implant-supported prosthesis. Subsequently, each group was subdivided into three models according to the transmucosal height (1, 2, and 3 mm). A static oblique load at an angle of 45 degrees to the long axis of the implant in palatal-buccal direction of 150 and 75 N was applied for multiple and single implant-supported prosthesis, respectively. The implants and abutments were assessed according to the equivalent Von Mises stress analyses while the bone and ceramics were analyzed through maximum and minimum principal stresses. The total deformation values increased in all models, while the transmucosal height was augmented. The transmucosal height of the abutments influences the stress values at the bone, ceramics, implants, and abutments of both the single and multiple implant-supported prostheses, with the transmucosal height of 1 mm showing the lowest stress values.  相似文献   

8.
Fixation of uncemented implant is influenced by peri-prosthetic bone ingrowth, which is dependent on the mechanical environment of the implant–bone structure. The objective of the study is to gain an insight into the tissue differentiation around an acetabular component. A mapping framework has been developed to simulate appropriate mechanical environment in the three-dimensional microscale model, implement the mechanoregulatory tissue differentiation algorithm and subsequently assess spatial distribution of bone ingrowth around an acetabular component, quantitatively. The FE model of implanted pelvis subjected to eight static load cases during a normal walking cycle was first solved. Thereafter, a mapping algorithm has been employed to include the variations in implant–bone relative displacement and host bone material properties from the macroscale FE model of implanted pelvis to the microscale FE model of the beaded implant–bone interface. The evolutionary tissue differentiation was observed in each of the 13 microscale models corresponding to 13 acetabular regions. The total implant–bone relative displacements, averaged over each region of the acetabulum, were found to vary between 10 and 60 \(\upmu \hbox {m}\). Both the linear elastic and biphasic poroelastic models predicted similar mechanoregulatory peri-prosthetic tissue differentiation. Considerable variations in bone ingrowth (13–88 %), interdigitation depth (0.2–0.82 mm) and average tissue Young’s modulus (970–3430 MPa) were predicted around the acetabular cup. A progressive increase in the average Young’s modulus, interdigitation depth and decrease in average radial strains of newly formed tissue layer were also observed. This scheme can be extended to investigate tissue differentiation for different surface texture designs on the implants.  相似文献   

9.
In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ?A) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ?A. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.  相似文献   

10.
Magnetic resonance (MR) imaging has been widely used to evaluate the thickness and volume of articular cartilage both in vivo and in vitro. While morphological information on the cartilage can be obtained using MR images, image processing for extracting geometric boundaries of the cartilage may introduce variations in the thickness of the cartilage. To evaluate the variability of using MR images to construct finite element (FE) knee cartilage models, five investigators independently digitized the same set of MR images of a human knee. The topology of cartilage thickness was determined using a minimal distance algorithm. Less than 8 percent variation in cartilage thickness was observed from the digitized data. The effect of changes in cartilage thickness on contact stress analysis was then investigated using five FE models of the knee. One FE model (average FE model) was constructed using the mean values of the digitized contours of the cartilage, and the other four were constructed by varying the thickness of the average FE model by +/- 5 percent and +/- 10 percent, respectively. The results demonstrated that under axial tibial compressive loading (up to 1,400 N), variations of cartilage thickness caused by digitization of MR images may result in a difference of approximately 10 percent in peak contact stresses (surface pressure, von Mises stress, and hydrostatic pressure) in the cartilage. A reduction of cartilage thickness caused increases of contact stresses, while an increase of cartilage thickness reduced contact stresses. Furthermore, the effect of variation of material properties of the cartilage on contact stress analysis was investigated. The peak contact stress increased almost linearly with the Young's modulus of the cartilage. The peak von Mises stress was dramatically reduced when the Poisson,s ratio was increased from 0.05 to 0.49 under an axial compressive load of 1,400 N, while peak hydrostatic pressure was dramatically increased. Peak surface pressure was also increased with the Poisson's ratio, but with a lower magnitude compared to von Mises stress and hydrostatic pressure. In conclusion, the imaging process may cause 10 percent variations in peak contact stress, and the predicted stress distribution is sensitive to the accuracy of the material properties of the cartilage model, especially to the variation of Poisson's ratio.  相似文献   

11.
A subject-specific three-dimensional finite element (FE) pelvic bone model has been developed and applied to the study of bone–cement interfacial response in cemented acetabular replacements. The pelvic bone model was developed from CT scan images of a cadaveric pelvis and validated against the experiment data obtained from the same specimen at a simulated single-legged stance. The model was then implanted with a cemented acetabular cup at selected positions to simulate some typical implant conditions due to the misplacement of the cup as well as a standard cup condition. For comparison purposes, a simplified FE model with homogeneous trabecular bone material properties was also generated and similar implant conditions were examined.The results from the homogeneous model are found to underestimate significantly both the peak von Mises stress and the area of the highly stressed region in the cement near the bone–cement interface, compared with those from the subject-specific model. Non-uniform cement thickness and non-standard cup orientation seem to elevate the highly stressed region as well as the peak stress near the bone–cement interface.  相似文献   

12.
The study focused on the influence of the implant material stiffness on stress distribution and micromotion at the interface of bone defect implants. We hypothesized that a low-stiffness implant with a modulus closer to that of the surrounding trabecular bone would yield a more homogeneous stress distribution and less micromotion at the interface with the bony bed. To prove this hypothesis we generated a three-dimensional, non-linear, anisotropic finite element (FE) model. The FE model corresponded to a previously developed animal model in sheep. A prismatic implant filled a standardized defect in the load-bearing area of the trabecular bone beneath the tibial plateau. The interface was described by face-to-face contact elements, which allow press fits, friction, sliding, and gapping. We assumed a physiological load condition and calculated contact pressures, shear stresses, and shear movements at the interface for two implants of different stiffness (titanium: E=110GPa; composite: E=2.2GPa). The FE model showed that the stress distribution was more homogeneous for the low-stiffness implant. The maximum pressure for the composite implant (2.1 MPa) was lower than for the titanium implant (5.6 MPa). Contrary to our hypothesis, we found more micromotion for the composite (up to 6 microm) than for the titanium implant (up to 4.5 microm). However, for both implants peak stresses and micromotion were in a range that predicts adequate conditions for the osseointegration. This was confirmed by the histological results from the animal studies.  相似文献   

13.
A finite element model of a semiconstrained ankle implant with the tibia and fibula was constructed so that the stresses in the polyethylene liner could be computed. Two different widths of talar components were studied and proximal boundary conditions were computed from an inverse process providing a load of five times body weight appropriately distributed across the osseous structures. von Mises stresses indicated small regions of localized yielding and contact stresses that were similar to those in acetabular cup liners. A wider talar component with 36% more surface area reduced contact stress and von Mises stresses at the center of the polyethylene component by 17%.  相似文献   

14.
Due to the increasing adoption of immediate implantation strategies and the rapid development of the computer aided design/computer aided manufacturing technology, a therapeutic concept based on patient-specific implant dentistry has recently been reintroduced by many researchers. However, little information is available on the designs of custom-made dental implant systems, especially their biomechanical behavior. The influence of the custom-made implant designs on the biomechanical performance for both an immediate and a delayed loading protocol in the maxillary esthetic zone was evaluated by means of the finite element (FE) method. FE models of three dental implants were considered: a state of the art cylindrical implant and two custom-made implants designed by reverse engineering technology, namely a root-analogue implant and a root-analogue threaded implant. The von Mises stress distributions and micro-motions around the bone-implant interfaces were calculated using ANSYS software. In a comparison of the three implant designs for both loading protocols, a favorable biomechanical performance was observed for the use of root-analogue threaded implant which approximated the geometry of natural anterior tooth and maintained the original long-axis. The results indicated that bone-implant interfacial micro-motion was reduced and a favorable stress distribution after osseointegration was achieved.  相似文献   

15.
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.  相似文献   

16.
During the operation of total hip arthroplasty, when the cement polymerizes between the stem implant and the bone, residual stresses are generated in the cement. The purpose of this study was to determine whether including residual stresses at the stem-cement interface of cemented hip implants affected the cement stress distributions due to externally applied loads. An idealized cemented hip implant subjected to bending was numerically investigated for an early post-operative situation. The finite element analysis was three-dimensional and used non-linear contact elements to represent the debonded stem-cement interface. The results showed that the inclusion of the residual stresses at the interface had up to a 4-fold increase in the von Mises cement stresses compared to the case without residual stresses.  相似文献   

17.
In implantology, when financial or biological feasibility limitations appear, it is necessary to use prostheses with geometries that deviate from the conventional, with a pontic in the absence of an intermediate implant. The aim of this study was analyze and understand the general differences in the stresses generated in implants, components and infrastructures according to the configuration of the prosthesis over three or two implants. Thus, this paper analyzes the von Mises equivalent stresses (VMES) of ductile materials on their external surfaces. The experimental groups: Regular Splinted Conventional Group (RCG), which had conventional infrastructures on 3 regular-length Morse taper implants (4x11?mm); Regular Splinted Pontic Group (RPG), which had infrastructures with intermediate pontics on 2 regular-length Morse taper implants (4x11?mm). The simulations of the groups were created with Ansys Workbench 10.0 software. The results revealed that the RPG presented greater areas of possible fragility due to higher stress concentrations, for example, in the cervical area of the union between the implant and component the top platform of the abutment, as well as greater coverage of the stress by the cervical implant threads. The RPG infrastructure was also more affected by stresses in the connection areas between the prostheses and on the occlusal surface. There is an advantage to using prostheses supported by a greater number of implants (RCG) because this decreases the stress in the analyzed structures and consequently improves stress dissipation to the supporting bone, which would preserve the system.  相似文献   

18.
The aim of this study was to evaluate the influence of pontic and cantilever designs (mesial and distal) on 3-unit implant-retained prosthesis at maxillary posterior region verifying stress and strain distributions on bone tissue (cortical and trabecular bones) and stress distribution in abutments, implants and fixation screws, under axial and oblique loadings, by 3D finite element analysis. Each model was composed of a bone block presenting right first premolar to the first molar, with three or two external hexagon implants (4.0 × 10 mm), supporting a 3-unit splinted dental fixed dental prosthesis with the variations: M1 – three implants supporting splinted crowns; M2 – two implants supporting prosthesis with central pontic; M3 – two implants supporting prosthesis with mesial cantilever; M4 – two implants supporting prosthesis with distal cantilever. The applied forces were 400 N axial and 200 N oblique. The von Mises criteria was used to evaluate abutments, implants and fixation screws and maximum principal stress and microstrain criteria were used to evaluate the bone tissue. The decrease of the number of implants caused an unfavorable biomechanical behavior for all structures (M2, M3, M4). For two implant-supported prostheses, the use of the central pontic (M2) showed stress and strain distributions more favorable in the analyzed structures. The use of cantilever showed unfavorable biomechanical behavior (M3 and M4), mainly for distal cantilever (M4). The use of three implants presented lower values of stress and strain on the analyzed structures. Among two implant-supported prostheses, prostheses with cantilever showed unfavorable biomechanical behavior in the analyzed structures, especially for distal cantilever.  相似文献   

19.
This study investigates the bone/implant mechanical responses in an implant overdenture retained by ball attachments on two conventional regular dental implants (RDI) and four mini dental implants (MDI) using finite element (FE) analysis. Two FE models of overdentures retained by RDIs and MDIs for a mandibular edentulous patient with validation within 6% variation errors were constructed by integrating CT images and CAD system. Bone grafting resulted in 2 mm thickness at the buccal side constructed for the RDIs-supported model to mimic the bone augmentation condition for the atrophic alveolar ridge. Nonlinear hyperelastic material and frictional contact element were used to simulate characteristic of the ball attachment-retained overdentures. The results showed that a denture supported by MDIs presented higher surrounding bone strains than those supported by RDIs under different load conditions. Maximum bone micro strains were up to 6437/2987 and 13323/5856 for MDIs/RDIs under single centric and lateral contacts, respectively. Corresponding values were 4429/2579 and 9557/5774 under multi- centric and lateral contacts, respectively. Bone micro strains increased 2.06 and 1.96-folds under single contact, 2.16 and 2.24-folds under multiple contacts for MDIs and RDIs when lateral to axial loads were compared. The maximum RDIs and MDIs implant stresses in all simulated cases were found by far lower than their yield strength. Overdentures retained using ball attachments on MDIs in poor edentulous bone structure increase the surrounding bone strain over the critical value, thereby damaging the bone when compared to the RDIs. Eliminating the occlusal single contact and oblique load of an implant-retained overdenture reduces the risk for failure.  相似文献   

20.
Although the biomechanical behavior of the acetabular cup (AC) implant is determinant for the surgical success, it remains difficult to be assessed due to the multiscale and anisotropic nature of bone tissue. The aim of the present study was to investigate the influence of the anisotropic properties of peri-implant trabecular bone tissue on the biomechanical behavior of the AC implant at the macroscopic scale. Thirteen bovine trabecular bone samples were imaged using micro-computed tomography (μCT) with a resolution of 18 μm. The anisotropic biomechanical properties of each sample were determined at the scale of the centimeter based on a dedicated method using asymptotic homogenization. The material properties obtained with this multiscale approach were used as input data in a 3D finite element model to simulate the macroscopic mechanical behavior of the AC implant under different loading conditions. The largest stress and strain magnitudes were found around the equatorial rim and in the polar area of the AC implant. All macroscopic stiffness quantities were significantly correlated (R2 > 0.85, p < 6.5 e-6) with BV/TV (bone volume/total volume). Moreover, the maximum value of the von Mises stress field was significantly correlated with BV/TV (R2 > 0.61, p < 1.6 e-3) and was always found at the bone-implant interface. However, the mean value of the microscopic stress (at the scale of the trabeculae) decrease as a function of BV/TV for vertical and torsional loading and do not depend on BV/TV for horizontal loading. These results highlight the importance of the anisotropic properties of bone tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号