首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Cup wear and inclination on the pelvic bone are significant factors, which change the contact of the articulating surfaces, thus, impacting the long-term performance of hip implants. This paper presents a finite element (FE) analysis of the contact of the dual mobility implants under the influence of cup wear and inclination. A 3D FE model of the implant was developed with the application of equivalent physiological loading and boundary conditions. Effects of cup inclination angle ranging from 45° to 60° and the wear depth ranging from 0 to 2.46 mm equivalent to up to 30 years of the implant's life on the contact pressure and von Mises stress were investigated. Simulation results show that the contact pressure and von Mises stress decrease significantly with a modest wear depth and remains quite in-sensitive to the cup inclination angle and wear depth up to 1.64 mm. With wear depth further up to 2.46 mm, the cup thickness (i.e. cup thinning on worn region) may be more predominant than increasing of contact area between the cup and the head. The wear on the inner surface of the cup is found to rule out the overall contact pressure and stress in the implant. Furthermore, individual and combined effects of both important parameters are analysed and discussed with respect to available clinical/laboratory studies.  相似文献   

2.
The range of motion (ROM) of total hip prostheses is influenced by a number of parameters. An insufficient ROM may cause impingement, which may result in subluxation, dislocation or material failure of the prostheses. In a three-dimensional CAD simulation, the position of the centre of rotation and the CCD angle of the stem were investigated. Displacement of the centre of rotation of the femoral head may be due to wear (PE cups) or to the design of the prosthesis (ceramic cups). Stems of widely differing design have been developed and implanted. The results of the present study demonstrate that the ROM is clearly reduced by increasing penetration of the femoral head. At an inclination angle of 45 degrees, a depth of penetration of 2 mm restricts flexion by about 15 degrees, and a depth of penetration of 3 mm by about 30 degrees. At smaller angles of inclination the ROM is reduced and flexion and abduction are associated with an increased risk of impingement. With steeper acetabular cup inclinations, the risk of impingement decreases, but dislocation, the risk of rim fractures (ceramic cups), and wear and penetration rates (PE cups) increase. The CCD angle of the stem should be oriented to the anatomical situation. At high CCD angles (> 135 degrees), flexion is clearly limited, in particular when there is penetration of the femoral head. For modern total hip arthroplasty, prosthetic systems characterised by precise positioning of components, minimum wear, slightly recessed inserts, and appropriate CCD angles should be used.  相似文献   

3.
The present investigation focuses on total hip replacement using ceramic acetabular components. The relationship between the position of the cup and the range of motion (ROM) was investigated. A limited range of motion may cause impingement, which is defined as contact between the femoral neck and the rim of the acetabular cup. Impingement may result in wear, chipping, fracture or dislocation of the femoral head. Joint movements were simulated in a three-dimensional CAD program. The results obtained underscore the importance of correct positioning and design of the cup for achieving a ROM as close to the physiological situation as possible. With ceramic cups, the inclination angle should not be more than 45 degrees, and the antetorsion angle between 10 and 15 degrees. If the cup is too vertical, the risk of dislocation and fracture of the ceramic increases. If, on the other hand, the angle of inclination is too small, flexion and abduction will be greatly limited. The study shows that acetabular components with non-recessed ceramic inserts should not be used. Slight recession of the insert helps to avoid impingement. The ROM is reduced and the risk of impingement appreciably increased when mushroom-shaped femoral heads (XL heads) or ceramic inserts protected by a polyethylene ring are used.  相似文献   

4.
Abstract

The biomechanical parameters of the hip joint articular surface were analysed in 141 adult hips after Legg-Calve Perthes Disease, and 114 contralateral unaffected hips (controls), by using HIPSTRESS mathematical models. Geometrical parameters, assessed from anteroposterior and axial radiograms, were used as input to models for resultant hip force and contact hip stress. Results confirm previous indications that head enlargement after the Legg-Calve-Perthes Disease compensates the values of hip stress. Furthermore, it was found that an increased risk for coxarthritis development after the disease is secondary to concomitant hip dysplasia, with considerable and statistically significantly lower centre-edge angle and unfavourable distribution of stress.  相似文献   

5.
It was shown in several clinical studies that static one-legged stance may be a relevant body position to describe the loads acting at the hip. However, the stress distribution averaged during movement may better describe hip load than hip contact stress distribution in the static body position. Using data on the resultant hip force during walking taken from the measurements of Bergmann (2001), spatial distribution of contact stress over the articular surface was calculated by the HIPSTRESS method and compared with the stress distribution in one-legged stance. It is shown, that the shape of the contact stress distribution during one-legged stance closely resembled the averaged contact stress distribution during the walking cycle (Pearson's correlation coefficient R2 equals; .986; p < .001). This finding presents a link between the hypothesis that the averaged contact stress distribution during a walking cycle is crucial for cartilage development and the results of clinical studies in which the calculated distribution of contact stress in one-legged stance was successfully used to predict the clinical status of the hip.  相似文献   

6.
A finite elements model was developed in order to evaluate the combined influence of the head lateral microseparation and the cup abduction angle on the contact pressure in Ceramic-on-Ceramic Total Hip Arthroplasty. The model's parameters were those used on the Leeds II hip simulator. A 32 mm head diameter and a 30 μm radial clearance was used. The cup was positioned with an abduction angle ranging from 45° to 90°. The medio-lateral microseparation varied from 0 to 500 μm. A load of 2500 N was applied through the head centre. For 45° abduction angle, edge loading appeared above a medial-lateral separation of 30 μm. Complete edge loading was obtained for a 60 μm medial-lateral separation. Under edge loading conditions, the contact area was found to be elliptical. For 45° abduction angle, as the head lateral separation increased, the maximal contact pressure increased from 66 MPa and converged to an asymptotic value of 205 MPa. Both cup abduction and lateral microseparation displacement induced a large increase in the stresses in Ceramic-on-Ceramic THA. However, this increase in contact pressure induced by higher abduction angle, became negligible as the lateral separation increased.  相似文献   

7.

Background  

Contact pressure of UHMWPE acetabular cup has been shown to correlate with wear in total hip replacement (THR). The aim of the present study was to test the hypotheses that the cup geometry, abduction angle, thickness and clearance can modify the stresses in cemented polyethylene cups.  相似文献   

8.
Abstract

Fretting and corrosion at the taper-head interface in total hip arthroplasty has been reported as a potential cause of early failure of the implant system. The finite element (FE) method can be used to study the mechanics at the taper junction that are difficult to assess experimentally. Taper mismatch is one of the factors that can influence the performance of the taper junction. In this study we have assessed the effect of taper mismatch, in combination with assembly force on the volumetric wear. The study showed that higher assembly forces and smaller mismatches result in the least volumetric wear.  相似文献   

9.
In an earlier paper, the authors presented the first verified method of computation of slide tracks in the relative motion between femoral head and acetabular cup of total hip prostheses. The method was applied for gait and for two hip simulator designs, and in a subsequent paper, for another eight designs. In the present paper, the track drawn by the resultant contact force, the so-called force track, was studied in depth. The variations of sliding distance, sliding velocity and direction of sliding during a cycle, all of which are important with respect to wear, were computed for gait and for 11 hip simulator designs. Moreover, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This integral makes it possible to compare clinical wear rates with those produced by hip simulators in terms of a wear factor. For the majority of contemporary hip simulators, the integral has so far been unknown. The computations revealed considerable differences, which are likely to explain the substantial differences in wear produced by the simulators. With the most common head diameter, 28 mm, the ranges for sliding distance per cycle, mean sliding velocity, total change of direction of sliding and integral were: 19.7-34.3 mm, 19.7-49.0 mm/s, 360-1513 degrees, and 17.4-43.5 Nm, respectively.  相似文献   

10.
BACKGROUND: The main concern in the long run of total hip replacements is aseptic loosening of the prosthesis. Optimization of the biomechanics of the hip joint is necessary for optimization of long-term success. A widely implementable tool to predict biomechanical consequences of preoperatively planned reconstructions still has to be developed. A potentially useful model to this purpose has been developed previously. The aim of this study is to quantify the association between the estimated hip joint contact force by this biomechanical model and RSA-measured wear rates in a clinical setting. METHODS: Thirty-one patients with a total hip replacement were measured with RSA, the gold standard for clinical wear measurements. The reference examination was done within 1 week of the operation and the follow-up examinations were done at 1, 2 and 5 years. Conventional pelvic X-rays were taken on the same day. The contact stress distribution in the hip joint was determined by the computer program HIPSTRESS. The procedure for the determination of the hip joint contact stress distribution is based on the mathematical model of the resultant hip force in the one-legged stance and the mathematical model of the contact stress distribution. The model for the force requires as input data, several geometrical parameters of the hip and the body weight, while the model for stress requires as input data, the magnitude and direction of the resultant hip force. The stress distribution is presented by the peak stress-the maximal value of stress on the weight-bearing area (p(max)) and also by the peak stress calculated with respect to the body weight (p(max)/W(B)) which gives the effect of hip geometry. Visualization of the relations between predicted values by the model and the wear at different points in the follow-up was done using scatterplots. Correlations were expressed as Pearson r values. RESULTS: The predicted p(max) and wear were clearly correlated in the first year post-operatively (r = 0.58, p = 0.002), while this correlation is weaker after 2 years (r = 0.19, p = 0.337) and 5 years (r = 0.24, p = 0.235). The wear values at 1, 2 and 5 years post-operatively correlate with each other in the way that is expected considering the wear velocity curve of the whole group. The correlation between the predicted p(max) values of two observers who were blinded for each other's results was very good (r = 0.93, p < 0.001). CONCLUSION: We conclude that the biomechanical model used in this paper provides a scientific foundation for the development of a new way of constructing preoperative biomechanical plans for total hip replacements.  相似文献   

11.
The purpose of the present study was to determine the effects of orthoses designed to support the forefoot and rearfoot on the kinematics and kinetics of the lower extremity joints during walking. Fifteen participants volunteered for this study. Kinematic and kinetic variables during overground walking were compared with the participants wearing sandals without orthoses or sandals with orthoses. Orthoses increased knee internal abduction moment during late stance and knee abduction angular impulse, and reduced the medial ground reaction force during late stance, adduction free moment, forefoot eversion angle, ankle inversion moment and angular impulse, hip adduction angle, hip abduction moment, and hip external rotation moment and angular impulse (p<0.05). Orthoses decreased the torsional forces on the lower extremity and reduced the loading at the hip during walking. These findings combined with our previous studies and those of others suggest that forefoot abnormalities are critically important in influencing lower extremity kinematics and kinetics, and may underlie some non-traumatic lower extremity injuries.  相似文献   

12.

Background

Recent studies have shown that the acetabular component frequently becomes deformed during press-fit insertion. The aim of this study was to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the Durom large head metal-on-metal (MOM) total hips in simulators.

Methods

Six Durom cups impacted into reamed acetabula of fresh cadavers were used as the experimental group and another 6 size-paired intact Durom cups constituted the control group. All 12 Durom MOM total hips were put through a 3 million cycle (MC) wear test in simulators.

Results

The 6 cups in the experimental group were all deformed, with a mean deformation of 41.78±8.86 µm. The average volumetric wear rate in the experimental group and in the control group in the first million cycle was 6.65±0.29 mm3/MC and 0.89±0.04 mm3/MC (t = 48.43, p = 0.000). The ion levels of Cr and Co in the experimental group were also higher than those in the control group before 2.0 MC. However there was no difference in the ion levels between 2.0 and 3.0 MC.

Conclusions

This finding implies that the non-modular acetabular component of Durom total hip prosthesis is likely to become deformed during press-fit insertion, and that the deformation will result in increased volumetric wear and increased ion release.

Clinical Relevance

This study was determined to explore the deformation of the Durom cup after implantation and to clarify the impact of deformation on wear and ion release of the prosthesis. Deformation of the cup after implantation increases the wear of MOM bearings and the resulting ion levels. The clinical use of the Durom large head prosthesis should be with great care.  相似文献   

13.
Numerous supporting structures assist in the retention of the femoral head within the acetabulum of the normal hip joint including the capsule, labrum, and ligament of the femoral head (LHF). During total hip arthroplasty (THA), the LHF is often disrupted or degenerative and is surgically removed. In addition, a portion of the remaining supporting structures is transected or resected to facilitate surgical exposure. The present study analyzes the effects of LHF absence and surgical dissection in THA patients. Twenty subjects (5 normal hip joints, 10 nonconstrained THA, and 5 constrained THA) were evaluated using fluoroscopy while performing active hip abduction. All THA subjects were considered clinically successful. Fluoroscopic videos of the normal hips were analyzed using digitization, while those with THA were assessed using a computerized interactive model-fitting technique. The distance between the femoral head and acetabulum was measured to determine if femoral head separation occurred. Error analysis revealed measurements to be accurate within 0.75mm. No separation was observed in normal hips or those subjects implanted with constrained THA, while all 10 (100%) with unconstrained THA demonstrated femoral head separation, averaging 3.3mm (range 1.9-5.2mm). This study has shown that separation of the prosthetic femoral head from the acetabular component can occur. The normal hip joint has surrounding capsuloligamentous structures and a ligament attaching the femoral head to the acetabulum. We hypothesize that these soft tissue supports create a passive, resistant force at the hip, preventing femoral head separation. The absence of these supporting structures after THA may allow increased hip joint forces, which may play a role in premature polyethylene wear or prosthetic loosening.  相似文献   

14.
目的:探讨人工髋关节置换术在治疗股骨头缺血性坏死(ANFH)中的临床疗效。方法:选择2007 年2 月-2011 年2 月我院收 治的320 例(340 髋)股骨头缺血性坏死患者,均采用人工髋关节置换术对患者进行治疗,其中160 例(172 髋)患者应用骨水泥型 假体进行治疗,另外160 例(168)患者采用非骨水泥型假体进行治疗。采用Harris评分对患者手术前后的髋关节功能情况进行评 价,并比较骨水泥治疗组和非骨水泥治疗组的临床疗效。结果:患者均获得随访,随访时间为3~18 个月。全部患者手术后的 Harris评分明显高于手术前,差异有统计学意义(P<0.05)。骨水泥治疗组和非骨水泥治疗组在术后出血量、术后Harris 评分及住 院时间方面的差异无统计学意义(P>0.05),但非骨水泥治疗组的并发症发生率明显低于骨水泥治疗组(P<0.05)。结论:采用人工 髋关节置换术治疗ANFH疗效显著,能明显改善患者的生活质量,骨水泥型假体与非骨水泥型假体的治疗效果相当,应根据患者 的具体情况进行合理的选择。  相似文献   

15.
Finite element simulation of early creep and wear in total hip arthroplasty   总被引:4,自引:0,他引:4  
Polyethylene wear particulate has been implicated in osteolytic lesion development and may lead to implant loosening and revision surgery. Wear in total hip arthroplasty is frequently estimated from patient radiographs by measurement of penetration of the femoral head into the polyethylene liner. Penetration, however, is multi-factorial, and includes components of wear and deformation due to creep. From a clinical perspective, it is of great interest to separate these elements to better evaluate true wear rates in vivo. Thus, the aim of this study was to determine polyethylene creep and wear penetration and volumetric wear during simulated gait loading conditions for variables of head size, liner thickness, and head–liner clearance. A finite element model of hip replacement articulation was developed, and creep and wear simulation was performed to 1 million gait cycles. Creep of the liner occurred quickly and increased the predicted contact areas by up to 56%, subsequently reducing contact pressures by up to 41%. Greater creep penetration was found with smaller heads, thicker liners, and larger clearance. The least volumetric wear but the most linear penetration was found with the smallest head size. Although polyethylene thickness increases from 4 to 16 mm produced only slight increases in volumetric wear and modest effects on total penetration, the fraction of creep in total penetration varied with thickness from 10% to over 50%. With thicker liners and smaller heads, creep will comprise a significant fraction of early penetration. These results will aid an understanding of the complex interaction of creep and wear.  相似文献   

16.
目的:通过对大龄发育性髋关节脱位(developmental dysplasia of the hip,DDH)患儿进行术前模拟手术,实现术中精确截骨及旋转角度,从而达到个体化治疗,改善患儿预后的目的。方法:本研究按照术前规划方式分为两组,一组为传统手术组;另一组为模拟手术组。共20例患儿均采用骨盆三联截骨术+股骨截骨术治疗,传统手术组10例,模拟手术组10例,手术时平均年龄为11.3岁,平均随访时间24.2个月。所有患儿均于术前行骨盆三维重建CT检查,测量CE角、股骨前倾角及髋臼指数,在mimics软件中,模拟手术方案,确定术中股骨截骨需要旋转的角度及骨盆截骨的位置,术中按照模拟手术的结果进行操作。术前评价指标使用Tonnis分级,术后评价指标使用改进的Trevor评分系统。结果:模拟手术组Tonnis分级3级4髋,Tonnis分级4级8髋;传统手术组Tonnis分级3级4髋,Tonnis分级4级9髋,两组患儿术前严重程度无显著性差异。依据Trevor评分,模拟手术组8髋(67%)优秀,3髋(25%)良好,1髋(8%)一般。传统手术组5髋(38%)优秀,5髋(38%)良好,3髋(23%)一般。两组有显著性差异。并发症:术后传统手术组3例患儿有不同程度的股骨头坏死。结论:大龄DDH患儿术前模拟手术,可以达到术中精确截骨及旋转角度,可改善患儿预后,实现该类患者的个体化治疗。  相似文献   

17.
目的:探讨人工髋关节置换术在治疗股骨头缺血性坏死(ANFH)中的临床疗效。方法:选择2007年2月-2011年2月我院收治的320例(340髋)股骨头缺血性坏死患者,均采用人工髋关节置换术对患者进行治疗,其中160例(172髋)患者应用骨水泥型假体进行治疗,另外160例(168)患者采用非骨水泥型假体进行治疗。采用Harris评分对患者手术前后的髋关节功能情况进行评价,并比较骨水泥治疗组和非骨水泥治疗组的临床疗效。结果:患者均获得随访,随访时间为3~18个月。全部患者手术后的Harris评分明显高于手术前,差异有统计学意义(P〈0.05)。骨水泥治疗组和非骨水泥治疗组在术后出血量、术后Harris评分及住院时间方面的差异无统计学意义(P〉0.05),但非骨水泥治疗组的并发症发生率明显低于骨水泥治疗组(P〈0.05)。结论:采用人工髋关节置换术治疗ANFH疗效显著,能明显改善患者的生活质量,骨水泥型假体与非骨水泥型假体的治疗效果相当,应根据患者的具体情况进行合理的选择。  相似文献   

18.
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.  相似文献   

19.
An effective lubrication can significantly reduce wear of metal-on-metal artificial hip joints. The improvement of the lubrication can be achieved through the optimisation of the bearing geometry in terms of a small clearance and/or the structural support such as a polyethylene backing underneath a metallic bearing in a sandwich acetabular cup form. The separate effects of these two factors on fluid film lubrication of 28 mm diameter metal-on-metal total hip joints under walking conditions were numerically investigated in this paper. The results show that a larger lubricant film due to the polyethylene backing can be significantly enhanced by the transient squeeze-film action, particularly during the stance phase, and a similar lubricant film can be developed for both the monolithic cup relying on the smaller clearance and the sandwich cup benefiting from the polyethylene backing. Both cup systems can function in a wide range of lubrication regimes, covering both mixed and fluid film, under the current design and manufacture conditions.  相似文献   

20.
In this paper an application of the boundary element method for simulating wear in total hip prosthesis is presented. Several examples including different update periods of the worn acetabular cup, various femoral head sizes and various materials for both the femoral head and the acetabular cup are simulated under the same variable loading conditions for up to 20 years of service. Moreover, two different femoral models are considered in order to investigate the influence of the femoral modelling. The analysis demonstrates that due to the boundary only modelling requirement, the computational time and storage remains low, allowing large service periods to be simulated. Generally, the results obtained are in good agreement with other researchers findings. Moreover, ignoring the bending of the femoral neck in the model, results in a small overestimation of the maximum wear depth, while the volumetric wear is slightly underestimated. However, these differences are trivial considering the reduction of the computational effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号