首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The aim of this study was the registration of digitized thin 2D sections of mouse vertebrae and tibiae used for histomorphometry of trabecular bone structure into 3D micro computed tomography (μCT) datasets of the samples from which the sections were prepared. Intensity-based and segmentation-based registrations (SegRegs) of 2D sections and 3D μCT datasets were applied. As the 2D sections were deformed during their preparation, affine registration for the vertebrae was used instead of rigid registration. Tibiae sections were additionally cut on the distal end, which subsequently undergone more deformation so that elastic registration was necessary. The Jaccard distance was used as registration quality measure. The quality of intensity-based registrations and SegRegs was practically equal, although precision errors of the elastic registration of segmentation masks in tibiae were lower, while those in vertebrae were lower for the intensity-based registration. Results of SegReg significantly depended on the segmentation of the μCT datasets. Accuracy errors were reduced from approximately 64% to 42% when applying affine instead of rigid transformations for the vertebrae and from about 43% to 24% when using B-spline instead of rigid transformations for the tibiae. Accuracy errors can also be caused by the difference in spatial resolution between the thin sections (pixel size: 7.25 μm) and the μCT data (voxel size: 15 μm). In the vertebrae, average deformations amounted to a 6.7% shortening along the direction of sectioning and a 4% extension along the perpendicular direction corresponding to 0.13–0.17 mm. Maximum offsets in the mouse tibiae were 0.16 mm on average.  相似文献   

3.
The analysis of ultrathin serial sections as 3-dimensional (3D) information requires interpretation and display of a large amount of data. We suggest a simple way to solve this problem; it permits presentation of a series of sections as a 3D color image of good quality. It involves a picture system with specialized hardware and software written for this purpose. 3D images of cellular organelles have been drawn either by manually defining the contour of the objects or by thresholding of the volumes in the structures. These 2 methods allow rapid drawing of the image on the screen. It is possible to determine the position, shape and size of 3D structures. This interactive system allows the user to choose between several options: colors, removal of parts of the object, and cutout.  相似文献   

4.
The liver is organized in hexagonal functional units – termed lobules – characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries – termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation.Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope. The CFD model was developed with Fluent 16.0 (ANSYS Inc., Canonsburg, PA), particular care was taken in imposing the correct boundary conditions representing a physiological state. To account for the remaining branches of the sinusoids, a lumped parameter model was used to prescribe the correct pressure at each outlet. The effect of an adhered cell on local hemodynamics is also investigated for different occlusion degrees.The model here proposed accurately reproduces the fluid dynamics in a portion of the sinusoidal network in mouse liver. Mean velocities and mass flow rates are in agreement with literature values from in vivo measurements. Our approach provides details on local phenomena, hardly described by other computational studies, either focused on the macroscopic hepatic vasculature or based on homogeneous porous medium model.  相似文献   

5.
近年来,根据三维软件虚拟复原的头骨来获取测量数据的方法被越来越多地应用在古生物,特别是古人类学的研究中,然而对于三维软件不同精度虚拟复原的头骨,其测量数值是否有差异,研究者并不是很清楚。本文以Mimics软件为例,根据其复原模型简化规则,选择未精简的最佳精度模型作为标准进行配对t检验或非参数检验,通过对43例云南人头骨的顶骨矢状弦长、颅周长、头盖部面积、乳突小房表面积、颅容量、乳突小房体积等六个测量项目的对比和分析,对Mimics软件低、中、高、最佳四种精度3D虚拟复原头骨间的测量差异进行了研究。结果显示:颅周长、头盖部面积、颅容量、乳突小房体积四项的所有简化精度模型的测量数据均与最佳精度模型测量数据的差异具有显著性;而除高精度组外,顶骨矢状弦长及乳突小房表面积的其余精度组测量数据均与最佳精度组差异具有显著性;此外,顶骨矢状弦长、颅周长、头盖部面积、颅容量的简化精度与最佳精度的测量差异占比均小于3%.而乳突小房表面积的低精度与最佳精度测量差异占比可超过50%,乳突小房体积的低精度与最佳精度测量差异占比可超过120%。这一结果提示我们,在测量Mimics复原的三维模型时,体量大差异小的测量项可以在较低精度的复原模型上进行测量;而对头骨内部腔窦这样体量小表面粗糙的结构,复原模型的精度选择及测量数据比较需要格外谨慎。  相似文献   

6.
The experimental process of collecting images from macromolecules in an electron microscope is such that it does not allow for prior specification of the angular distribution of the projection images. As a consequence, an uneven distribution of projection directions may occur. Concerns have been raised recently about the behavior of 3D reconstruction algorithms for the case of unevenly distributed projections. It has been illustrated on experimental data that in the case of a heavily uneven distribution of projection directions some algorithms tend to elongate the reconstructed volumes along the overloaded direction so much as to make a quantitative biological analysis impossible. In answer to these concerns we have developed a strategy for quantitative comparison and optimization of 3D reconstruction algorithms. We apply this strategy to quantitatively analyze algebraic reconstruction techniques (ART) with blobs, simultaneous iterative reconstruction techniques (SIRT) with voxels, and weighted backprojection (WBP). We show that the elongation artifacts that had been previously reported can be strongly reduced. With our specific choices for the free parameters of the three algorithms, WBP reconstructions tend to be inferior to those obtained with either SIRT or ART and the results obtained with ART are comparable to those with SIRT, but at a very small fraction of the computational cost of SIRT.  相似文献   

7.
Action sport cameras (ASC) have achieved a large consensus for recreational purposes due to ongoing cost decrease, image resolution and frame rate increase, along with plug-and-play usability. Consequently, they have been recently considered for sport gesture studies and quantitative athletic performance evaluation. In this paper, we evaluated the potential of two ASCs (GoPro Hero3+) for in-air (laboratory) and underwater (swimming pool) three-dimensional (3D) motion analysis as a function of different camera setups involving the acquisition frequency, image resolution and field of view. This is motivated by the fact that in swimming, movement cycles are characterized by underwater and in-air phases what imposes the technical challenge of having a split volume configuration: an underwater measurement volume observed by underwater cameras and an in-air measurement volume observed by in-air cameras. The reconstruction of whole swimming cycles requires thus merging of simultaneous measurements acquired in both volumes. Characterizing and optimizing the instrumental errors of such a configuration makes mandatory the assessment of the instrumental errors of both volumes.In order to calibrate the camera stereo pair, black spherical markers placed on two calibration tools, used both in-air and underwater, and a two-step nonlinear optimization were exploited. The 3D reconstruction accuracy of testing markers and the repeatability of the estimated camera parameters accounted for system performance. For both environments, statistical tests were focused on the comparison of the different camera configurations. Then, each camera configuration was compared across the two environments. In all assessed resolutions, and in both environments, the reconstruction error (true distance between the two testing markers) was less than 3mm and the error related to the working volume diagonal was in the range of 1:2000 (3×1.3×1.5 m3) to 1:7000 (4.5×2.2×1.5 m3) in agreement with the literature. Statistically, the 3D accuracy obtained in the in-air environment was poorer (p<10−5) than the one in the underwater environment, across all the tested camera configurations. Related to the repeatability of the camera parameters, we found a very low variability in both environments (1.7% and 2.9%, in-air and underwater). This result encourage the use of ASC technology to perform quantitative reconstruction both in-air and underwater environments.  相似文献   

8.
Rotator cuff (RC) tears may be associated with increased glenohumeral instability; however, this instability is difficult to quantify using currently available diagnostic tools. Recently, the three-dimensional (3D) reconstruction and registration method of the scapula and humeral head, based on sequences of low-dose biplane X-ray images, has been proposed for glenohumeral displacement assessment. This research aimed to evaluate the accuracy and reproducibility of this technique and to investigate its potential with a preliminary application comparing RC tear patients and asymptomatic volunteers. Accuracy was assessed using CT scan model registration on biplane X-ray images for five cadaveric shoulder specimens and showed differences ranging from 0.6 to 1.4 mm depending on the direction of interest. Intra- and interobserver reproducibility was assessed through two operators who repeated the reconstruction of five subjects three times, allowing defining 95% confidence interval ranging from ±1.8 to ±3.6 mm. Intraclass correlation coefficient varied between 0.84 and 0.98. Comparison between RC tear patients and asymptomatic volunteers showed differences of glenohumeral displacements, especially in the superoinferior direction when shoulder was abducted at 20° and 45°. This study thus assessed the accuracy of the low-dose 3D biplane X-ray reconstruction technique for glenohumeral displacement assessment and showed potential in biomechanical and clinical research.  相似文献   

9.
10.

Background

Heterogeneity in plaque composition in human coronary artery bifurcations is associated with blood flow induced shear stress. Shear stress is generally determined by combing 3D lumen data and computational fluid dynamics (CFD). We investigated two new procedures to generate 3D lumen reconstructions of coronary artery bifurcations for shear stress computations.

Methods

We imaged 10 patients with multislice computer tomography (MSCT) and intravascular ultrasound (IVUS). The 3D reconstruction of the main branch was based on the fusion of MSCT and IVUS. The proximal part of side branch was reconstructed using IVUS data or MSCT data, resulting in two different reconstructions of the bifurcation region. The distal part of the side branch was based on MSCT data alone. The reconstructed lumen was combined with CFD to determine the shear stress. Low and high shear stress regions were defined and shear stress patterns in the bifurcation regions were investigated.

Results

The 3D coronary bifurcations were successfully generated with both reconstruction procedures. The geometrical features of the bifurcation region for the two reconstruction procedures did not reveal appreciable differences. The shear stress maps showed a qualitative agreement, and the low and high shear stress regions were similar in size and average shear stress values were identical. The low and high shear stress regions showed an overlap of approximately 75%.

Conclusion

Reconstruction of the side branch with MSCT data alone is an adequate technique to study shear stress and wall thickness in the bifurcation region. The reconstruction procedure can be applied to further investigate the effect of shear stress on atherosclerosis in coronary bifurcations.  相似文献   

11.
本文阐述了植物组织切片的三维计算机重建技术研究现状 ,分析了它在植物体细胞胚发生专题中的应用  相似文献   

12.
Computational models of cellular structures generally rely on simplifying approximations and assumptions that limit biological accuracy. This study presents a comprehensive image processing pipeline for creating unified three-dimensional (3D) reconstructions of the cell cytoskeletal networks and nuclei. Confocal image stacks of these cellular structures were reconstructed to 3D isosurfaces (Imaris), then tessellations were simplified to reduce the number of elements in initial meshes by applying quadric edge collapse decimation with preserved topology boundaries (MeshLab). Geometries were remeshed to ensure uniformity (Instant Meshes) and the resulting 3D meshes exported (ABAQUS) for downstream application. The protocol has been applied successfully to fibroblast cytoskeletal reorganisation in the scleral connective tissue of the eye, under mechanical load that mimics internal eye pressure. While the method herein is specifically employed to reconstruct immunofluorescent confocal imaging data, it is also more widely applicable to other biological imaging modalities where accurate 3D cell structures are required.  相似文献   

13.
A three dimensional reconstruction technique was used for the analysis of a theridiid spider's (Achaearanea tepidariorum) testicular cyst. Although microscopic techniques have greatly improved, most of the information gathered is still based on two‐dimensional images. Particularly in spiders, it is very difficult to count the exact number of sperm in a single cyst, since their spermatogenetic processes takes place within the spherical cysts through the flagellar coiling process. Since morphological features of spider sperm provide detailed information on the whole spermatogenetic processes, we analyzed the exact number of germ cells per cyst in A. tepidariorum through a three‐dimensional image reconstruction technique. For image processing, serially sectioned histological images were scanned using a light microscope and 3D rendering images were reconstructed from these sections. Based on the three dimensional image analysis of the testicular cyst, the number of secondary spermatocytes per cyst was calculated to be 32 (25). Therefore the total number of sperm produced from a single cyst can be calculated as 64 (26), which indicates that a single spermatogonium undergoes four mitotic divisions and an additional two meiotic divisions to produce mature spermatozoa.  相似文献   

14.
A mini-compression jig was built to perform in situ tests on bovine trabecular bone monitored by micro-MRI. The MRI antenna provided an isotropic resolution of 78 μm that allows for a volume correlation method to be used. Three-dimensional displacement fields are then evaluated within the bone sample during the compression test. The performances of the correlation method are evaluated and discussed to validate the technique on trabecular bone. By considering correlation residuals and estimates of acquisition noise, the measured results are shown to be trustworthy. By analyzing average strain levels for different interrogation volumes along the loading direction, it is shown that the sample size is less than that of a representative volume element. This study shows the feasibility of the 3D-displacement and strain field analyses from micro-MRI images. Other biological tissues could be considered in future work.  相似文献   

15.
The three-dimensional (3D) organization of nucleoli in the somatic nuclei (macronuclei) of recently fed and starved Didinium nasutum was reconstructed on the basis of serial ultra-thin sections. It was shown that nucleoli, looking on the single sections like individual separate structures, appeared to be parts of the large complicated branchy nucleolar networks. A 30 h starvation did not lead to disintegration of this network, but stimulated formation of numerous vacuoles in the granular component of nucleoli, which becomes more condensed. Unlike starved D. nasutum, in fed ciliates numerous holes appeared in the fibrillar component located at the periphery of nucleoli. These holes may presumably serve as channels for transporting newly synthesized rRNA. To our knowledge, this is the first report of a 3D reconstruction of the nucleolar apparatus in ciliates.  相似文献   

16.
The nervous system of bivalves is bilaterally symmetrical and consists of interconnected cerebropleural, pedal and visceral ganglia, which may be partially to totally fused. We studied the microanatomy of the ganglia of Scrobicularia plana using three-dimensional (3D) reconstruction. We also examined whether intersex differences in the neural structure exist. Each type of ganglion had a characteristic 3D shape, and the cerebropleural ganglia shape was slightly asymmetrical. The visceral, pedal and cerebropleural ganglia are progressively smaller in volume, but only the pedal ganglion volume was positively correlated with the animal’s length, height or width; suggesting functional implications. As to total surface area, correlations were found for the cerebropleural and visceral ganglia, but it was the visceral that consistently showed strong positive correlations with each biometric parameter. The medulla may often penetrate the cortex and touch the capsule in areas that (contrary to what might be expected) are not connected with emerging nerves. Despite the differences in volume and surface area among ganglia, the volume ratio of cortex/medulla is fairly stable (c. 1.5), suggesting a functional optimum. Finally, we conclude that the ganglia of males and females do not show significant quantitative differences.  相似文献   

17.
Morphological study on spermatids and spermatozoa have long been performed regarding various changes of cell organelles during spermiogenesis as a potential phylogenetic inference. Based on the fact that the number of germ cells per cyst increases according to a geometric series, knowing the exact number of germ cells in a certain stage may lead to the total number of sperms produced per cyst. In spiders, however, the entire process takes place in a cyst represented by a spermatogonium, producing sperms in spherical shape. It is very difficult to count the exact number of germ cells produced per cyst through a 2D image analysis. Therefore, we applied a 3D image of testicular cyst of an orb-weaving spider to visualize the exact number of germ cells produced from a cyst. In this study, 2D images obtained from serially sectioned micrographs were scanned precisely and reconstructed using a 3D-rendering technique. Finally, this research reveals that the exact number of spermatozoa produced each cyst in Larinioides cornutus appeared to be 128 (27), which indicates that a single spermatogonium undergoes five mitotic divisions and two maturing divisions (meiosis) to produce final spermatozoa.  相似文献   

18.
几何形态测量方法是生物学研究中用于形态特征分析和形态比较研究的一种常用方法。其核心思想是利用空间坐标点获取研究对象的形态数据,再通过坐标数据的多元统计分析,定量探讨研究对象的形态特征及影响其形态变异的因素。近年来,随着三维扫描技术的广泛应用以及对于石制品形态特征量化分析要求的提高,基于三维模型的几何形态测量方法开始出现在相关的旧石器考古研究中。本文首先对三维几何形态测量分析方法及其在石制品研究中的应用情况进行介绍,随后具体阐述了该方法的分析流程。为便于国内学者更好地了解这一方法,本文进一步以广西百色盆地南坡山遗址发现的手斧为例,利用三维几何形态测量方法对这些手斧的几何形态特征进行了初步探讨。三维几何形态测量方法为石制品形态研究提供了新思路和新视角,有望成为今后中国旧石器考古研究中一个重要的发展方向。  相似文献   

19.
王晨  任东 《昆虫知识》2013,(6):1745-1752
本文简单介绍了Autodesk Maya等软件以及利用三维技术制作古昆虫复原图所涉及到的三大方面知识,包括:三维昆虫制作、场景设计和艺术气氛。较为详细的介绍了利用三维软件制作昆虫的主要步骤。总结了在制作复原图时,将生物学、计算机技术、美术学三方面知识相结合的经验和技巧。为三维技术在古昆虫学研究工作中的推广和使用提供了更多思路。  相似文献   

20.
In clinical routine, lower limb analysis relies on conventional X-ray (2D view) or computerised tomography (CT) Scan (lying position). However, these methods do not allow 3D analysis in standing position. The aim of this study is to propose a fast and accurate 3D-reconstruction-method based on parametric models and statistical inferences from biplanar X-rays with clinical measurements' (CM) assessment in standing position for a clinical routine use. For the reproducibility study, the 95% CI was under 2.7° for all lower limbs' angular measurements except for tibial torsion, femoral torsion and tibiofemoral rotation ( < 5°). The 95% CI were under 2.5 mm for lower limbs' lengths and 1.5 to 3° for the pelvis' CM. Comparisons between X-rays and CT-scan based 3D shapes in vitro showed mean differences of 1.0 mm (95% CI = 2.4 mm). Comparisons of 2D lower limbs' and 3D pelvis' CM between standing ‘Shifted-Feet’ and ‘Non-Shifted-Feet’ position showed means differences of 0.0 to 1.4°. Significant differences were found only for pelvic obliquity and rotation. The reconstruction time was about 5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号