首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel acyl-CoA synthetase in adrenoleukodystrophy target tissues   总被引:2,自引:0,他引:2  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by demyelination of white matter. The X-ALD gene product adrenoleukodystrophy protein (ALDP) is expressed broadly among various tissues. However, deficiency of functional ALDP exclusively impairs brain, adrenal gland, and testis. Thus, loss of ALDP function is assumed to involve inactivation of a putative mediating factor that functions in a tissue-specific manner. Here we cloned a mouse cDNA encoding a novel protein, Lipidosin, that possesses long-chain acyl-CoA synthetase (LCAS) activity. Lipidosin is expressed exclusively in mouse brain, adrenal gland, and testis, which are affected by X-ALD. LCAS activity of Lipidosin was diminished by mutation of conserved amino acids within the AMP-binding domain. Mutation of the Drosophila homologue of Lipidosin has been reported to cause neuronal degeneration. Thus, Lipidosin may mediate the link between ALDP dysfunction and the impairment of fatty acid metabolism in X-ALD.  相似文献   

2.
Alsalem A  Shaheen R  Alkuraya FS 《Gene》2012,496(2):141-143
Vanishing white matter disease (VWMD) is an autosomal recessive disorder characterized by progressive degeneration of the white matter. While variable clinical presentation is well documented, there are no reports of adrenal insufficiency. We describe a young Saudi girl with VWMD whose atypical phenotype suggested adrenoleukodystrophy. This complicated the diagnostic workup until homozygosity scan revealed a novel mutation in EIF2B2.This report widens the clinical spectrum of VWMD and raises the possibility of an allele-specific association with adrenal insufficiency.  相似文献   

3.
4.
Altered expression of ALDP in X-linked adrenoleukodystrophy.   总被引:9,自引:2,他引:7       下载免费PDF全文
X-linked adrenoleukodystrophy (ALD) is a neurodegenerative disorder with variable phenotypic expression that is characterized by elevated plasma and tissue levels of very long-chain fatty acids. However, the product of the gene defective in ALD (ALDP) is a membrane transporter of the ATP-binding cassette family of proteins and is not related to enzymes known to activate or oxidize fatty acids. We generated an antibody that specifically recognizes the C-terminal 18 amino acids of ALDP and can detect ALDP by indirect immunofluorescence. To better understand the mechanism by which mutations in ALDP lead to disease, we used this antibody to examine the subcellular distribution and relative abundance of ALDP in skin fibroblasts from normal individuals and ALD patients. Punctate immunoreactive material typical of fibroblast peroxisomes was observed in cells from seven normal controls and eight non-ALD patients. Of 35 ALD patients tested, 17 had the childhood-onset cerebral form of the disease, 13 had the milder adult phenotype adrenomyeloneuropathy, 3 had adrenal insufficiency only, and 2 were affected fetuses. More than two-thirds (69%) of all patients studied showed no punctate immunoreactive material. There was no correlation between the immunofluorescence pattern and clinical phenotype. We determined the mutation in the ALD gene in 15 of these patients. Patients with either a deletion or frameshift mutation lacked ALDP immunoreactivity, as expected. Four of 11 patients with missense mutations were also immunonegative, indicating that these mutations affected the stability or localization of ALDP. In the seven immunopositive patients with missense mutations, correlation of the location and nature of the amino acid substitution may provide new insights into the function of this peroxisomal membrane protein. Furthermore, the study of female relatives of immunonegative ALD probands may aid in the assessment of heterozygote status.  相似文献   

5.
Summary Male and female siblings demonstrated similar facial features and had seizures from birth. Neurologic development, which was delayed, began to deteriorate at 1 year. Sudden death occurred at 2 8/12 and 2 3/12 years of age associated with respiratory infections. Tanning of the skin was noted 2 months before death in the first child. In the second child, blood cortisol levels failed to increase after intravenous ACTH administration, and computerized axial tomography (CAT) scans were normal.At autopsy both patients demonstrated adrenal atrophy and degenerative changes of the white matter throughout the neuraxis. We propose that these siblings have a new form of adrenoleukodystrophy that can be distinguished from the X-linked form by onset at birth, clinical appearance, and pattern of inheritance.A comparison of these cases with a second disorder, Zellweger's syndrome, suggests that a distinctive phenotype is associated with intrauterine degeneration of white matter.  相似文献   

6.
Park JA  Jun KR  Han SH  Kim GH  Yoo HW  Hur YJ 《Gene》2012,498(1):131-133
X-linked adrenoleukodystrophy (ALD; MIM #300100) is a neurodegenerative disorder caused by mutations in the ABCD1 adrenoleukodystrophy protein gene. The ABCD1 gene mutations have been reported by laboratories in China and Japan, but not in Korea. This case report describes a Korean boy diagnosed with X-ALD. Direct sequencing for the ABCD1 gene in this boy and his mother detected Tyr620His missense mutation, caused by cDNA nucleotide change 1858 T>C in exon 8 (c.1858T>C). This missense variant was novel and predicted to be possibly damaging by the PolyPhen and SIFT prediction software. Moreover, this is the first report in Korean.  相似文献   

7.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder resulting from mutations within the ABCD1 gene. Adrenomyeloneuropathy (AMN) and childhood cerebral ALD (CCALD) are most common phenotypes in the Western ALD patients. Here we performed mutation analysis of ABCD1 in 10 Chinese ALD families and identified 8 mutations, including one novel deletion (c.1477_1488 + 11del23) and 7 known mutations. Mutations c.1772G>A and c.1816T>C were first reported in the Chinese patients. Mutations c.1661G>A and c.1679C>T were demonstrated to be de novo mutations. The dinucleotide deletion 1415_16delAG, described as a mutational hotspot in different ethnic groups, was identified in two families. In addition, we performed a retrospective nation-wide mutation study of X-linked ALD in China based on a literature review. The retrospective study further confirmed the hypothesis that exon 6 is a potential mutation cluster region in the Asian populations. Furthermore, it suggested that CCALD is the most common phenotype in China.  相似文献   

8.
Adrenoleukodystrophy (ALD), an X-linked inherited metabolic disorder, is the most frequent inborn peroxisomal disease. It leads to demyelination in the central and peripheral nervous system. Defective -oxidation of saturated very long chain fatty acids (VLCFAs; C22:0–C26:0) in peroxisomes has been shown to lead to an accumulation of VLCFAs in leukoid areas of the central nervous system, peripheral nerves, adrenal gland, and blood. The ALD gene has been recently identified and encodes a 745-amino-acid protein. We screened patients with adrenoleukodystrophy/adrenomyeloneuropathy (ALD/AMN) from 20 kindreds for mutations in the ALD gene. Eleven missense and two nonsense mutations, five deletions, and one insertion were detected by direct sequencing of eight reverse transcribed fragments of the ALD-gene mRNA. Four mutations could be shown to be de novo. All mutations could be confirmed in carriers by sequencing genomic DNA. No correlation between the type of mutation and the severity of the phenotype could be observed. The mutations were not detected in the ALD gene of 30 healthy persons.  相似文献   

9.
Mutation in the X-chromosomal adrenoleukodystrophy gene (ALD; ABCD1) leads to X-linked adrenoleukodystrophy (X-ALD), a severe neurodegenerative disorder. The encoded adrenoleukodystrophy protein (ALDP/ABCD1) is a half-size peroxisomal ATP-binding cassette protein of 745 amino acids in humans. In this study, we chose nine arbitrary mutant human ALDP forms (R104C, G116R, Y174C, S342P, Q544R, S606P, S606L, R617H, and H667D) with naturally occurring missense mutations and examined the intracellular behavior. When expressed in X-ALD fibroblasts lacking ALDP, the expression level of mutant His-ALDPs (S606L, R617H, and H667D) was lower than that of wild type and other mutant ALDPs. Furthermore, mutant ALDP-green fluorescence proteins (S606L and H667D) stably expressed in CHO cells were not detected due to rapid degradation. Interestingly, the wild type ALDP co-expressed in these cells also disappeared. In the case of X-ALD fibroblasts from an ALD patient (R617H), the mutant ALDP was not detected in the cells, but appeared upon incubation with a proteasome inhibitor. When CHO cells expressing mutant ALDP-green fluorescence protein (H667D) were cultured in the presence of a proteasome inhibitor, both the mutant and wild type ALDP reappeared. In addition, mutant His-ALDP (Y174C), which has a mutation between transmembrane domain 2 and 3, did not exhibit peroxisomal localization by immunofluorescense study. These results suggest that mutant ALDPs, which have a mutation in the COOH-terminal half of ALDP, including S606L, R617H, and H667D, were degraded by proteasomes after dimerization. Further, the region between transmembrane domain 2 and 3 is important for the targeting of ALDP to the peroxisome.  相似文献   

10.
X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation, is caused by defects in the ATP Binding Cassette Subfamily D Member 1 (ABCD1) gene. X-ALD patients may be asymptomatic or present with several clinical phenotypes varying from severe to mild, severe cerebral adrenoleuko-dystrophy to mild adrenomyeloneuropathy (AMN). Although most female heterozygotes present with AMN-like symptoms after 60 years of age, occasional cases of females with the cerebral form have been reported. Phenotypic variability has been described within the same kindreds and even among monozygotic twins. There is no association between the nature of ABCD1 mutation and the clinical phenotypes, and the molecular basis of phenotypic variability in X-ALD is yet to be resolved. Various genetic, epigenetic, and environmental influences are speculated to modify the disease onset and severity. In this review, we summarize the observations made in various studies investigating the potential modifying factors regulating the clinical manifestation of X-ALD, which could help understand the pathogenesis of the disease and develop suitable therapeutic strategies.  相似文献   

11.
12.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder characterized by impaired peroxisomal betaoxidation of very-long-chain fatty acids (VLCFAs). This is probably due to reduced activation of the VLCFAs and results in demyelination of the nervous system and adrenocortical insufficiency. The ALD gene is localized on Xq28, has 10 exons and encodes a protein of 745 amino acids with significant homology to the membrane peroxisomal protein PMP70. Characterizing the disease causing mutations is of importance in prenatal diagnosis because 12-20% of women who are obligatory carriers show false-negative results when tested for VLCFA in plasma. We have analyzed DNA from blood samples of 7 Jewish (5 Sephardi and 2 Ashkenazi) and 3 Arab Israeli families suffering from ALD. Five missense-type mutations were identified: R104H, Y174C, L229P, R401Q, and G512C. A single mutation, R464X, was nonsense, and two, Y171 frameshift and E471 frameshift, were frameshift. Interestingly, a single mutation was identified in three families of Moroccan Jewish descent, probably due to a founder effect.  相似文献   

13.
In this study, we analyzed the ABCD1 gene in X-linked adrenoleukodystrophy (X-ALD) patients and relatives from 38 unrelated families from South America, as well as phenotypic proportions, survival estimates, and the potential effect of geographical origin in clinical characteristics.

Methods

X- ALD patients from Brazil, Argentina and Uruguay were invited to participate in molecular studies to determine their genetic status, characterize the mutations and improve the genetic counseling of their families. All samples were screened by SSCP analysis of PCR fragments, followed by automated DNA sequencing to establish the specific mutation in each family. Age at onset and at death, male phenotypes, genetic status of women, and the effect of family and of latitude of origin were also studied.

Results

We identified thirty-six different mutations (twelve novel). This population had an important allelic heterogeneity, as only p.Arg518Gln was repeatedly found (three families). Four cases carried de novo mutations. Intra-familiar phenotype variability was observed in all families. Out of 87 affected males identified, 65% had the cerebral phenotype (CALD). The mean (95% CI) ages at onset and at death of the CALD were 10.9 (9.1–12.7) and 24.7 (19.8–29.6) years. No association was found between phenotypic manifestations and latitude of origin. One index-case was a girl with CALD who carried an ABCD1 mutation, and had completely skewed X inactivation.

Conclusions

This study extends the spectrum of mutations in X-ALD, confirms the high rates of de novo mutations and the absence of common mutations, and suggests a possible high frequency of cerebral forms in our population.  相似文献   

14.
In this study we addressed the targeting requirements of peroxisomal ABC transporters, in particular the human adrenoleukodystrophy protein. This membrane protein is defective or missing in X-linked adrenoleukodystrophy, a neurodegenerative disorder predominantly presenting in childhood. Using adrenoleukodystrophy protein deletion constructs and green fluorescent protein fusion constructs we identified the amino acid regions 1-110 and 67-164 to be sufficient for peroxisomal targeting. However, the minimal region shared by these constructs (amino acids 67-110) is not sufficient for peroxisomal targeting by itself. Additionally, the NH2-terminal 66 amino acids enhance targeting efficiency. Green fluorescent protein-labeled fragments of human peroxisomal membrane protein 69 and Saccharomyces cerevisiae Pxa1 corresponding to the amino acid 67-164 adrenoleukodystrophy protein region were also directed to the mammalian peroxisome. The required region contains a 14-amino-acid motif (71-84) conserved between the adrenoleukodystrophy protein and human peroxisomal membrane protein 69 and yeast Pxa1. Omission or truncation of this motif in the adrenoleukodystrophy protein abolished peroxisomal targeting. The single amino acid substitution L78F resulted in a significant reduction of targeting efficiency. The in-frame deletion of three amino acids (del78-80LLR) within the proposed targeting motif in two patients suffering from X-linked adrenoleukodystrophy resulted in the mislocalization of a green fluorescent protein fusion protein to nucleus, cytosol and mitochondria. Our data define the targeting region of human adrenoleukodystrophy protein containing a highly conserved 14-amino-acid motif.  相似文献   

15.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder with impaired very-long-chain fatty acid (VLCFA) metabolism that produces a neurological disease with significant variability of clinical phenotypes even within kindred. The two most common forms are the cerebral form (CALD) with an important inflammatory reaction at the active edge of demyelinating lesions, resembling some aspects of multiple sclerosis pathology, and adrenomyeloneuropathy (AMN), which involves the spinal cord and in which the inflammatory reaction is mild or absent. One hypothesis is that the phenotypic variability is related to T cell-mediated immune mechanisms playing a primary role in the demyelinating pathogenic process of CALD. The present study aims to test the hypothesis that CSF of patients with the CALD form contains highly restricted T cell populations. The variable regions of the T cell receptor beta chains (TCR Vbeta) were studied in CSF from 29 ALD patients with different phenotypes. RNA was extracted and cDNA synthesized from CSF lymphocytes; TCR Vbeta gene segments were amplified from the cDNA by polymerase chain reaction (PCR) using 20 family-specific primers. PCR products were analyzed by Southern blot. Some amplified Vbeta products were sequenced. The majority of ALD patients (21/29), whatever their phenotype, exhibited oligoclonal T cell expansion. However the overexpression of some TCR Vbeta families was heterogeneous among the different patients without any preponderance of specific Vbeta families or any clustering according to clinical phenotype. In particular a dominant TCR Vbeta utilization was not found in patients with CALD.  相似文献   

16.
Summary We have performed linkage analysis with the DNA markers DXS52 and the clotting factor VIII gene (F8C), in several large families with X-linked adrenoleukodystrophy (ALD). The tight linkage to DXS52 could be extended giving a maximal LOD score of 22.5 at 1 cM. F8C was also tightly linked to ALD with a maximal LOD score of 7.8 without recombination. Multipoint linkage analysis with the markers DXS304, DXS52, and F8C indicated that both the gene for ALD and for F8C are distal to DXS52. In four patients with ALD, no major structural rearrangement in the Xqter region was observed; in particular, there were no abnormalities in the vision blindness genes. DNA analysis appeared to be of use in determination of the carrier status of females at risk, for the determination of the origin of the mutation in a particular family, and for prenatal diagnosis.  相似文献   

17.
The straited accumulations in adrenal cortical cells and brain macrophages that are characteristic of adrenoleukodystrophy have been studied histochemically in cryostat sections to seek leads for the biochemical identification of the striated material. It stained pale pink with oil red O and did not stain with the Schultz cholesterol procedure or periodic acid-Schiff technique. By utilizing the birefringence of the accumulations as a marker, it was determined that, unlike natural cholesterol and cholesterol esters, the striated material was resistant to acetone and ethanol extraction. It was readily soluble, however, in nonpolar solvents such as n-hexane and chloroform. These findings indicated that the material was most probably a lipid, and they suggested that sequential extraction of adrenoleukodystrophy adrenal and brain with acetone and then n-hexane could be used to isolate this material in relatively pure form. Based on this lead, biochemical studies have just revealed a fatty acid abnormality in adrenoleukodystrophy which appears to be unique to this genetic disease.  相似文献   

18.
X-linked adrenoleukodystrophy (X-ALD) is a clinically heterogeneous disorder ranging from the severe childhood cerebral form to asymptomatic persons. The overall incidence is 1:16,800 including hemizygotes as well as heterozygotes. The principal molecular defect is due to inborn mutations in the ABCD1 gene encoding the adrenoleukodystrophy protein (ALDP), a transporter in the peroxisome membrane. ALDP is involved in the transport of substrates from the cytoplasm into the peroxisomal lumen. ALDP defects lead to characteristic accumulation of saturated very long-chain fatty acids, the diagnostic disease marker. The pathogenesis is unclear. Different molecular mechanisms seem to induce inflammatory demyelination, neurodegeneration and adrenocortical insufficiency involving the primary ABCD1 defect, environmental factors and modifier genes. Important information has been derived from the X-ALD mouse models; species differences however complicate the interpretation of results. So far, bone marrow transplantation is the only effective long-term treatment for childhood cerebral X-ALD, however, only when performed at an early-stage of disease. Urgently needed novel therapeutic strategies are under consideration ranging from dietary approaches to gene therapy.  相似文献   

19.
The mutations in human glucosylceramidase lead to Gaucher disease, which is the most prevalent lysosomal storage disease. So far 153 point mutations have been recorded in human glucosylceramidase, resulting in a wide variability in clinical presentations. In this study, we use the amino-acid distribution probability to quantify each mutation, and use the cross-impact analysis with Bayes’ law to build a quantitative relationship between mutated primary structure of human glucosylceramidase and status of Gaucher disease. The results demonstrate that we can build a quantitative relationship between changed structure and changed function of protein, which is useful for understanding the genotype–phenotype relationship of disease.  相似文献   

20.
Summary Cerebro-hepato-renal (Zellweger) syndrome, adrenoleukodystrophy, and Refsum's disease patients can be divided into at least five distinct groups, according to the nature of their plasma changes and their fibroblast phytanic acid oxidase activities. The biochemical changes in the plasma vary from an increase in a single metabolite or group of structurally related metabolites, such as in X-linked adrenoleukodystrophy (ALD) and classical Refsum's disease, to an increase in a number of structurally distinct metabolites, as in neonatal ALD/Zellweger syndrome, and infantile Refsum's disease. All patients, with the exception of those with the X-linked form of adrenoleukodystrophy are deficient in phytanic acid oxidase activity. The great similarity observed in neonatal adrenoleukodystrophy/Zellweger syndrome and infantile Refsum's disease suggests that the basic biochemical lesion in each may be similar or at least closely related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号