首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The relative simplicity of the mandible and its functional integration with the upper dentition in carnivorans makes it an ideal subject for functional morphological studies. To compare the mandibular biomechanics of two convergently evolved bone‐cracking ecomorphologies, we used finite element modelling to analyse mandibular corpus stress. The bone‐cracking spotted hyena Crocuta crocuta was used as a living analogue to the late Miocene percrocutid Dinocrocuta gigantea, using the grey wolf Canis lupus as a molar bone‐crushing outgroup. Mandibular stress values during p3, p4, and m1 tooth biting are found to be lowest in Cr. crocuta, and elevated in both Ca. lupus and D. gigantea. However, the stress‐dissipation patterns of the pre‐m1 corpus are similar between Cr. crocuta and D. gigantea. Lastly, D. gigantea has a relatively weaker corpus at the post‐m1 position than either Cr. crocuta or Ca. lupus. These findings suggest that even though stress patterns are similar amongst the bone‐cracking ecomorphs, the extinct D. gigantea had a weaker mandibular structure when performing a comparable bone‐cracking task as in Cr. crocuta because of its slender post‐m1 corpus. Ontogeny could potentially play an important role in strengthening the post‐m1 corpus by growth in the dorsoventral axis, and continuous increase in biting performance through adulthood in living Cr. crocuta suggests the possibility of a relatively more delayed development to full bone‐cracking capability in D. gigantea. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 683–696.  相似文献   

3.
4.
    
A finger finite element (FE) model was created from CT images of a Japanese male in order to obtain a shape-biofidelic model. Material properties and articulation characteristics of the model were taken from the literature. To predict bone fracture and realistically represent the fracture pattern under various loading conditions, the ESI-Wilkins-Kamoulakos rupture model in PAM-CRASH (ESI Group S.A., Paris, France) was utilized in this study with parameter values of the rupture model determined by compression testing and simulation of porcine fibula. A finger pinch simulation was then conducted to validate the finger FE model. The force-displacement curve and fracture load from the pinch simulation was compared to the result of finger pinch test using cadavers. Simulation results are coincident with the test result, indicating that the finger FE model can be used in an analysis of finger bone fracture during pinch accident. With this model, several pinch simulations were conducted with different pinching object’s stiffness and pinching energy. Conditions for evoking finger bone fracture under pinch loading were then estimated based on these results. This study offers a novel method to predict possible hazards of manufactured goods during the design process, thus finger injury due to pinch loading can be avoided.  相似文献   

5.
    
Abstract

Total Hip Arthroplasty requires pre-surgical evaluation between un-cemented and cemented prostheses. A Patient with intra-operative periprosthetic fracture and another with a successful outcome were recruited, and their finite element models were constructed by processing CT data, assuming elastic-plastic behavior of the bone as function of the local density. To resemble the insertion of the prosthesis into the femur, a fictitious thermal dilatation is applied to the broach volume. Strain-based fracture risk factor is estimated, depicting results in terms of the total mechanical strain expressed using a simple “traffic lights” color code to provide immediate, concise, and intelligible pre-operative information to surgeons.  相似文献   

6.
    
Because changes in the mechanical properties of bone are closely related to trabecular bone remodeling, methods that consider the temporal morphological changes induced by adaptive remodeling of trabecular bone are needed to estimate long-term fracture risk and bone quality in osteoporosis. We simulated bone remodeling using simplified and pig trabecular bone models and estimated the morphology of healthy and osteoporotic cases. We then displayed the fracture risk of the remodeled models based on a cumulative histogram from high stress. The histogram showed more elements had higher stresses in the osteoporosis model, indicating that the osteoporosis model had a greater risk.  相似文献   

7.
Abstract

The finite element method was used to analyze heat transfer within a section of the forearm while exposed to different ambient conditions and with different metabolic states. The three-dimensional model accounts for the different material properties of bone, muscle and blood and incorporates a single artery-vein pair for counter-current heat exchange. The geometry of the model was developed from anatomical cross-sectional images of the forearm. The model was used to determine the effects or rest vs. exercise, free vs. forced surface convection and 0°C vs. — 20 °C external temperatures. The results of the model were compared to experimental data and the model exhibits qualitatively correct behaviour. This model can be used to study hyperthermia, burns and cryogenic freezing of tissue.  相似文献   

8.
9.
Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior–posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.  相似文献   

10.
    
Three-dimensional finite element models of the thoracolumbar junction (T12–L2) and isolated L1 vertebra were developed to investigate the role of material properties and loading conditions on vertebral stresses and strains to predict fracture risk. The geometry of the vertebrae was obtained from computed tomography images. The isolated vertebra model included an L1 vertebra loaded through polymethylmethacrylate plates located at the top and bottom of the vertebra, and the segment model included T12 to L2 vertebrae and seven ligaments, fibrous intervertebral discs and facet joints. Each model was examined with both homogeneous and spatially varying bone tissue properties. Stresses and strains were compared for uniform compression and flexion. Including material heterogeneity remarkably reduced the stiffness of the isolated L1 vertebra and increased the magnitudes of the minimum principal strains and stresses in the mid-transverse section. The stress and strain distributions further changed when physiological loading was applied to the L1 vertebra. In the segment models, including heterogeneous material properties increased the magnitude of the minimum principal strain by 158% in the centre of the mid-transverse section. Overall, the inclusion of heterogeneity and physiological loading increased the magnitude of the strains up to 346% in flexion and 273% in compression.  相似文献   

11.
    
A model to calculate bone resorption driven by fluid flow at the bone–soft tissue interface is developed and used as a basis for computer calculations, which are compared to experiments where bone is subjected to fluid flow in a rat model. Previous models for bone remodelling calculations have been based on the state of stress, strain or energy density of the bone tissue as the stimulus for remodelling. We believe that there is experimental support for an additional pathway where an increase in the amount of the cells directly involved in bone removal, the osteoclasts, is caused by fluid pressure, flow velocity or other parameters related to fluid flow at the bone–soft tissue interface, resulting in bone resorption.  相似文献   

12.
Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens from the femoral neck (n = 3), greater trochanter (n = 6), and lumbar vertebra (n = 1) of eight different donors were scanned by μ-CT and converted to voxel-based finite element models. Unconfined uniaxial compression and shear loading were simulated for each of three different constitutive models: a principal strain-based model, Drucker–Lode, and Drucker–Prager. The latter was applied with both infinitesimal and finite kinematics. Apparent yield strains exhibited minimal dependence on the constitutive model, differing by at most 16.1%, with the kinematic formulation being influential in compression loading. At the tissue level, the quantities and locations of yielded tissue were insensitive to the constitutive model, with the exception of the Drucker–Lode model, suggesting that correlation of microdamage with computational models does not improve the ability to discriminate between constitutive laws. Taken together, it is unlikely that a tissue constitutive model can be fully validated from apparent-level experiments alone, as the calculations are too insensitive to identify differences in the outcomes. Rather, any asymmetric criterion with a valid yield surface will likely be suitable for most trabecular bone models.  相似文献   

13.
14.
Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 μm had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.  相似文献   

15.
Practical application of lithium (Li) metal anodes has been hindered by Li dendrite growth, which renders a low Coulombic efficiency and short lifespan of working Li metal batteries. A stable solid electrolyte interphase (SEI) is crucial in suppressing the formation of Li dendrites. Herein the local stress and deformation evolvement status of a SEI layer during Li electrodeposition are investigated through a quantitative electrochemical–mechanical model based on a finite element method. Furthermore, the impacts of structural uniformity and mechanical strength on the stability of the SEI under different working conditions are investigated. Improving the structural uniformity of SEI is the most effective way to enhance the stability of SEI, which regulates ion transportation. In addition, pursuing extremely high mechanical strength is shown to be pointless, and a moderate elastic modulus of 3.0 GPa is suggested. This work affords an insight into the rational design of stable SEI layers and sheds light on a possible pathway toward practical applications of Li metal anodes.  相似文献   

16.
At the tissue level, the local material properties of human cancellous bone are heterogeneous due to constant remodelling. Since standard high-resolution computed tomography scanning methods are unable to capture this heterogeneity in detail, local differences in mineralisation are normally not incorporated in computational models. To investigate the effects of heterogeneous mineral distribution on the apparent elastic properties, 40 cancellous bone samples from the human femoral neck were scanned by means of synchrotron radiation microcomputed tomography (SRμCT). SRμCT-based micromechanical finite element models that accounted for mineral heterogeneity were compared with homogeneous models. Evaluation of the apparent stiffness tensor of both model types revealed that homogeneous models led to a minor but significant (p < 0.05) overestimation of the elastic properties of heterogeneous models by 2.18 ± 1.89%. Variation of modelling parameters did not affect the overestimation to a great extent. It was concluded that the heterogeneous mineralisation has only a minor influence on the apparent elastic properties of human cancellous bone.  相似文献   

17.
    
Despite considerable literature on the functional anatomy of the hominoid upper limb, there are no quantitative approaches relating to bone design and the resulting muscular-activity enhancement. The purpose of this study is to quantitatively analyze the relationship between the rotational efficiency of the pronator teres muscle and the design of the skeletal structures on which it acts. Using conventional scan images of a human forearm for three rotational positions, this study develops an original biomechanical model that defines rotational efficiency as a mathematical function expressing a geometrical relationship between the origin and insertion muscular sites. The results show that this parameter varies throughout the entire pronation range, being maximal when the forearm lies around its functional position. Moreover, the rotational-efficiency formula allows us to demonstrate, by several simulation conditions, that an improvement in pronation efficiency is derived from a large shaft radius curvature, a large humeral medial epicondyle, and a more proximal pronator teres radial attachment. The fact that forearm pronation efficiency can be inferred, even quantified, throughout the entire rotational range, by applying the biomechanical model developed here allows us to undertake anatomical approaches in the field of Evolutionary Anthropology, to interpret more precisely how skeletal design is related to upper-limb function in extant and fossil primate taxa.  相似文献   

18.
    
Subject-specific finite element models are an extensively used tool for the numerical analysis of the biomechanical behaviour of human bones. However, bone modelling is not an easy task due to the complex behaviour of bone tissue, involving non-homogeneous and anisotropic mechanical properties. Moreover, bone is a living tissue and therefore its microstructure and mechanical properties evolve with time in a known process called bone remodelling. This phenomenon has been widely studied, many being the numerical models that have been formulated to predict density distribution and its evolution in several bones. The aim of the present study is to assess the capability of a bone remodelling model to predict the bone density distribution of different types of human bone (femur, tibia and mandible) comparing the obtained results with the bone density estimated by means of computerised tomography. Good accuracy was observed for the bone remodelling predictions including the thickness of the cortical layer.  相似文献   

19.
    
Work on the interspecific and intraspecific variation of trabecular bone in the proximal femur of primates demonstrates important architectural variation between animals with different locomotor behaviors. This variation is thought to be related to the processes of bone adaptation whereby bone structure is optimized to the mechanical environment. Micromechanical finite element models were created for the proximal femur of the leaping Galago senegalensis and the climbing and quadrupedal Loris tardigradus by converting bone voxels from high-resolution X-ray computed tomography scans of the femoral head to eight-noded brick elements. The resulting models had approximately 1.8 million elements each. Loading conditions representing takeoff phase of a leap and more generalized load orientations were applied to the models, and the models were solved using the iterative \"row-by-row\" matrix-vector multiplication algorithm. The principal strain and Von Mises stress results for the leaping model were similar for both species at each load orientation. Similar hip joint reaction forces in the range of 4.9 x to 12 x body weight were calculated for both species under each loading condition, but the hip reaction values estimated for Loris were higher than predicted based on locomotor behavior. These results suggest that functional adaptation to hip joint loading may not fully explain the differences in femoral head trabecular bone structure in Galago and Loris. The finite element method represents a unique and useful tool for analyzing the functional adaptation of trabecular bone in a diversity of animals and for reconstructing locomotor behavior in extinct taxa.  相似文献   

20.
    
Bone is a dynamic tissue that undergoes structural modification in response to its mechanical environment, but how bone cells sense and respond to loading conditions remains incompletely understood. Current theories focus on strain-induced fluid flow for the primary means of mechanotransduction. To examine the influence of age-related cortical rarefaction on lacunocanalicular fluid characteristics, coupled fluid flow and mechanical computational models of bone specimens representing young, mid-age and aged samples were derived artificially from the same original micro-computed tomography image data. Simulated mechanical loading was applied to the bone models to induce pressure-driven interstitial fluid flow. Results demonstrated a decrease in pore pressure and fluid velocity magnitudes with age as a result of increased cortical porosity. Mean canal separation, as opposed to canal size, was implicated as a primary factor affecting age-related fluid dynamics. Future investigations through refinement of the model may implicate fluid stasis or inadequate nutrient transport experienced by osteocytes as a key factor in the initiation of cortical remodelling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号