首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.  相似文献   

2.
Prediction of soft tissue aesthetics is important for achieving an optimal outcome in orthodontic treatment planning. Previously, applicable procedures were mainly restricted to 2-D profile prediction. In this study, a generic 3-D finite element (FE) model of the craniofacial soft and hard tissue was constructed, and individualisation of the generic model based on cone beam CT data and mathematical transformation was investigated. The result indicated that patient-specific 3-D facial FE model including different layers of soft tissue could be obtained through mathematical model transformation. Average deviation between the transformed model and the real reconstructed one was 0.47 ± 0.77 mm and 0.75 ± 0.84 mm in soft and hard tissue, respectively. With boundary condition defined according to treatment plan, such FE model could be used to predict the result of orthodontic treatment on facial soft tissue.  相似文献   

3.
    
Detailed finite element modelling of needle insertions into soft tissue phantoms encounters difficulties of large deformations, high friction, contact loading and material failure. This paper demonstrates the use of cohesive elements in high-resolution finite element models to overcome some of the issues associated with these factors. Experiments are presented enabling extraction of the strain energy release rate during crack formation. Using data from these experiments, cohesive elements are calibrated and then implemented in models for validation of the needle insertion process. Successful modelling enables direct comparison of finite element and experimental force–displacement plots and energy distributions. Regions of crack creation, relaxation, cutting and full penetration are identified. By closing the loop between experiments and detailed finite element modelling, a methodology is established which will enable design modifications of a soft tissue probe that steers through complex mechanical interactions with the surrounding material.  相似文献   

4.
    
Plant cell expansion is controlled by a fine‐tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in‐depth knowledge of cell wall mechanics. Pollen tubes are tip‐growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM‐based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.  相似文献   

5.
In this article, we describe the latest developments of the minimally invasive hepatic surgery simulator prototype developed at INRIA. A key problem with such a simulator is the physical modelling of soft tissues. We propose a new deformable model based on non-linear elasticity and the finite element method. This model is valid for large displacements, which means in particular that it is invariant with respect to rotations. This property improves the realism of the deformations and solves the problems related to the shortcomings of linear elasticity, which is only valid for small displacements. We also address the problem of volume variations by adding to our model incompressibility constraints. Finally, we demonstrate the relevance of this approach for the real-time simulation of laparoscopic surgical gestures on the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号