首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
2.
The purpose of the present study was to test the hypothesis that myofascial force transmission may not be limited by compartmental boundaries of a muscle group to synergists. Muscles of the anterior tibial compartment in rat hindlimb as well as of the neighbouring peroneal compartment (antagonistic muscles) were excited maximally. Length–force data, based on proximal lengthening, of EDL, as well as distal lengthening of the tibial muscles (TA + EHL) and the peroneal muscle group (PER) were collected independently, while keeping the other two muscle groups at a constant muscle–tendon complex length. Simultaneously measured, distal and proximal EDL active forces were found to differ significantly throughout the experiment. The magnitude of this difference and its sign was affected after proximal lengthening of EDL itself, but also of the tibial muscle complex and of the peroneal muscle complex. Proximal lengthening of EDL predominantly affected its synergistic muscles within the anterior crural compartment (force decrease <4%). Lengthening of either TA or PER caused a decrease in distal EDL isometric force (by 5–6% of initial force). It is concluded also that mechanisms for mechanical intermuscular interaction extend beyond the limits of muscle compartments in the rat hindlimb. Even antagonistic muscles should not be considered fully independent units of muscular function.

Particular, strong mechanical interaction was found between antagonistic tibial anterior muscle and peroneal muscle complexes: Lengthening of the peroneal complex caused tibial complex force to decrease by approximately 25%, whereas for the reverse a 30% force decrease was found.  相似文献   


3.
4.
5.
Friedman M  Brazeau M 《Biology letters》2008,4(1):103; discussion 104-103; discussion 105
  相似文献   

6.
7.
This article describes current views on motor and sensory control of extraocular muscles (EOMs) based on anatomical data. The special morphology of EOMs, including their motor innervation, is described in comparison to classical skeletal limb and trunk muscles. The presence of proprioceptive organs is reviewed with emphasis on the palisade endings (PEs), which are unique to EOMs, but the function of which is still debated. In consideration of the current new anatomical data about the location of cell bodies of PEs, a hypothesis on the function of PEs in EOMs and the multiply innervated muscle fibres they are attached to is put forward.  相似文献   

8.
9.
10.
Recent studies in health economics have generated two important findings: that as a measure of fatness the body mass index (BMI) is biased; and that, when it comes to analyzing wage correlates, both fat-free mass (FFM) and body fat (BF) are better suited to the task. We validate these findings for Germany using the BIAdata Base Project and the German Socio-Economic Panel. While we find no significant correlation between BMI and wages in any of our models, simple linear regression models featuring both contemporary and time-lagged fatness measures indicate that FFM and, to a lesser extent, BF are associated with hourly wages: more specifically, the relationship between FFM/BF and hourly wages is about two to three times higher for females than for males. In contrast, fixed-effects models indicate that there is no correlation between hourly wages and both FFM and BF with one exception: a significant correlation (and one in line with expectations) is found to be the rule among job changers.  相似文献   

11.
12.
13.
14.
15.
16.
Two physiologically distinct types of muscles, the direct and indirect flight muscles, develop from myoblasts associated with the Drosophila wing disc. We show that the direct flight muscles are specified by the expression of Apterous, a Lim homeodomain protein, in groups of myoblasts. This suggests a mechanism of cell-fate specification by labelling groups of fusion competent myoblasts, in contrast to mechanisms in the embryo, where muscle cell fate is specified by single founder myoblasts. In addition, Apterous is expressed in the developing adult epidermal muscle attachment sites. Here, it functions to regulate the expression of stripe, a gene that is an important element of early patterning of muscle fibres, from the epidermis. Our results, which may have broad implications, suggest novel mechanisms of muscle patterning in the adult, in contrast to embryonic myogenesis.  相似文献   

17.
The functional roleof the skeletal muscle intermediate filament system was investigated bymeasuring the magnitude of muscle force loss after cyclic eccentriccontraction (EC) in normal and desmin null mouse extensor digitorumlongus muscles. Isometric stress generated was significantly greater inwild-type (313 ± 8 kPa) compared with knockout muscles (276 ± 13 kPa) before EC (P < 0.05), but 1 h after 10 ECs, both muscle types generated identical levels of stress (~250kPa), suggesting less injury to the knockout. Differences in injurysusceptibility were not explained by the different absolute stresslevels imposed on wild-type versus knockout muscles (determined bytesting older muscles) or by differences in fiber length or mechanicalenergy absorbed. Morphometric analysis of longitudinal electronmicrographs indicated that Z disks from knockout muscles were morestaggered (0.36 ± 0.03 µm) compared with wild-type muscles(0.22 ± 0.03 µm), which may indicate that the knockoutcytoskeleton is more compliant. These data demonstrate that lack of theintermediate filament system decreases isometric stress production andthat the desmin knockout muscle is less vulnerable to mechanical injury.

  相似文献   

18.
The hyobranchial skeleton of the porolepiform rhipidistian Laccognathus panderi Gross is described. The double composition of the ceratohyal in crossopterygians is proposed. The urohyal of porolepiforms, like that of Latimeria, consists of cartilaginous axial and membranous peripheral portions. The differences between porolepiforms and osteolepiforms in the structure of the hyobranchial skeleton, particularly, in the shape of the urohyal are attributable to different arrangements of the hypobranchial muscles. Porolepiforms and coelacanths have retained the coracomandibularis muscle inherited from early gnathostomes, whereas the same muscle of osteolepiforms was transformed into the geniohyoideus muscle. This transformation is accounted for by functional changes in the hyobranchial apparatus.  相似文献   

19.
A ten times elongation of certain abdominal intersegmental muscles occurs in female locusts during digging prior to oviposition. During and after oviposition the muscles contract, shortening by up to 90% or more, restoring the resting positions of the abdominal segments.Discontinuous Z-discs permit supercontraction at the resting length and then fragment into Z-bodies when the muscle is stretched, so enabling it to superextend without loss of the contractile property. In this superextended state the fibres resemble smooth muscles. After oviposition, the muscle fibres contract but the sarcomeres are not restored completely, some of the Z-bodies being unevenly distributed in the recontracted fibres. Locust ovipositor muscle has the most extreme example of Z-disc disagregation known from the insects and is the insect muscle which approaches most closely the smooth muscle condition.Two types of motor nerve innervate this muscle, one is ordinary and the other, containing granules, resembles an octopaminergic fibre possibly involved in regulating a catch mechanism in the muscle.The physiological requirements for egg-laying with an extensible ovipositor, which is also part of the normally functioning abdomen, are well met by the ultrastructural specializations of locust ovipositor muscles.  相似文献   

20.
Ruthenium-red staining of skeletal and cardiac muscles   总被引:1,自引:0,他引:1  
Summary The effects of ruthenium red (RR) on amphibian and mammalian skeletal muscles and mammalian myocardium were examined. In skeletal muscle cells, a discrete pattern of staining can be brought about within the lumina of the terminal cisternae (junctional sarcoplasmic reticulum [SR]) by sequential exposure to RR and OsO4. After prolonged immersion in RR solution, formation of pentalaminar segments (zippering) occurs at various points along the longitudinal (network) SR tubules. Zippering can be elicited in skeletal SR at any stage of preparation prior to postfixation with OsO4. By means of dispersive X-ray analysis, both ruthenium and osmium were seen to be deposited in skeletal muscle junctional SR, and ruthenium was detected in the myoplasm as well. In skeletal muscles whose T tubules were ruptured by exposure to glycerol, the pattern of SR staining and zippering resulting from ruthenium-osmium treatment was not affected. These findings indicate that RR is capable of passage across the sarcolemma of skeletal muscle and that this passage does not occur solely under conditions in which the plasma membrane is damaged. In contrast, RR does not opacify or modify any region of the SR of cardiac muscle. However, after this treatment, randomly distributed opaque bodies, composed of parallel lamellar structures, appear throughout the myocardial cells. A few of these bodies are associated with lipid droplets, but the rest are of unknown origin. The failure of the SR of cardiac muscle to stain after exposure to ruthenium dye (even though this material enters these cells) suggests that the chemical composition of cardiac SR is significantly different from that of skeletal muscle SR.Supported in part by PHS grant HL-11155 (to N.S.) and American Heart Grant-in-Aid 78-753 (to M.S.F.). The authors are grateful to Drs. David Harder and Lawrence Sellin for their assistance with the preparation of frog skeletal muscle, to Dr. S.K. Jirge for his helpful suggestions and discussions, and particularly to Dr. Kenneth R. Lawless and Ms. Ann Marshall of the Department of Materials Sciences, University of Virginia School of Engineering, and Col. John M. Brady of the United States Army Institute of Dental Research, Walter Reed Army Medical Center, for their help with, and for the use of, the X-ray analysis equipment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号