首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatmentand protection of craniocerebral injury caused by facial impact.  相似文献   

3.
4.
    
The purpose of this study was to assess the protective capacity of an ice hockey goaltender helmet for three concussive impact events. A helmeted and unhelmeted headform was used to test three common impact events in ice hockey (fall, puck impacts and shoulder collisions). Peak linear acceleration, rotational acceleration and rotational velocity as well as maximum principal strain and von Mises stress were measured for each impact condition. The results demonstrated the tested ice hockey goaltender helmet was well designed to manage fall and puck impacts but does not consistently protect against shoulder collisions and an opportunity may exist to improve helmet designs to better protect goaltenders from shoulder collisions.  相似文献   

5.
    
《Current biology : CB》2022,32(14):3189-3194.e4
Download : Download video (26MB)  相似文献   

6.
The conflicts in Iraq and Afghanistan have been epitomized by the insurgents' use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.  相似文献   

7.
Acute subdural hematoma (ASDH) sometimes occurred in judo because of the bridging veins’ failure by rotation of the brain in the skull. However, the relationship between intracranial behaviour and the motion of the body on occiput impact has not yet been clarified. In this study, we developed an intracranial mechanical model based on multibody dynamics and compared it with experimental results. The results show the importance of modelling bridging veins and cerebral spinal fluid to the relative displacement between brain and skull. The proposed model will contribute to accident analyses or the optimum design of supporting devices.  相似文献   

8.
9.
    
Concussion can occur from a variety of events (falls to ice, collisions etc) in ice hockey, and as a result it is important to identify how these different impact sources affect the relationship between impact kinematics and strain that has been found to be associated to this injury. The purpose of this research was to examine the relationship between kinematic variables and strain in the brain for impact sources that led to concussion in ice hockey. Video of professional ice hockey games was analyzed for impacts that resulted in reported clinically diagnosed concussions. The impacts were reconstructed using physical models/ATDs to determine the impact kinematics and then simulated using finite element modelling to determine maximum principal strain and cumulative strain damage measure. A stepwise linear regression was conducted between linear acceleration, change in linear velocity, rotational acceleration, rotational velocity, and strain response in the brain. The results for the entire dataset was that rotational acceleration had the highest r2 value for MPS (r2 = 0.581) and change in rotational velocity for cumulative strain damage measure (r2 = 450). When the impact source (shoulder, elbow, boards, or ice impacts) was isolated the rotational velocity and acceleration r2 value increased, indicating that when evaluating the relationships between kinematics and strain based metrics the characteristics of the impact is an important factor. These results suggest that rotational measures should be included in future standard methods and helmet innovation and design in ice hockey as they have the highest association with strain in the brain tissues.  相似文献   

10.
Locomotion persists across all manner of internal and external perturbations. The objective of this study was to identify locomotor compensation strategies in rodent models of peripheral nerve injury. We found that hip-to-toe limb length and limb angle was preferentially preserved over individual joint angles after permanent denervation of rat ankle extensor muscles. These findings promote further enquiry into the significance of limb-level function for neuromechanical control of legged locomotion.  相似文献   

11.
The goal of this investigation was to investigate how walking patterns are affected following muscle-damaging exercise by quantifying both lower limb kinematics and kinetics. Fifteen young women conducted a maximal isokinetic eccentric exercise (EE) muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60°/s. Three-dimensional motion data and ground reaction forces (GRFs) were collected 24 h pre-EE while the participants walked at their preferred self-selected walking speed (SWS). Participants were asked to perform two gait conditions 48 h post-EE. The first condition (COND1) was to walk at their own speed and the second condition (COND2) to maintain the SWS (±5%) they had 24 h pre-EE. Walking speed during COND1 was significantly lower compared to pre-exercise values. When walking speed was controlled during COND2, significant effects of muscle damage were noticed, among other variables, for stride frequency, loading rate, lateral and vertical GRFs, as well as for specific knee kinematics and kinetics. These findings provide new insights into how walking patterns are adapted to compensate for the impaired function of the knee musculature following muscle damage. The importance to distinguish the findings caused by muscle damage from those exhibited in response to changes in stride frequency is highlighted.  相似文献   

12.
13.
14.

Objective

The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared.

Methods

For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity.

Results

Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed.

Conclusions

Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC.  相似文献   

15.
There are over 1.9 million eye injuries per year in the United States, with blunt impacts the cause of approximately one-half of all civilian eye injuries. No previous experimental studies have investigated the effects of the extraocular muscles on the impact response of the eye. A spring-powered blunt impactor was used to determine the effects that the extraocular muscles have on the force–deflection and injury response of the eye to blunt trauma. A total of 10 dynamic impact tests were performed at 8.2±0.1 m/s on five human cadaver heads. With the extraocular muscles left intact, the average peak force was found to be 271±51 N at 7.5±0.9 mm posterior translation; with the muscles transected, the average peak force was 268±26 N at 7.6±1.3 mm of posterior translation. From the data available from this study, the peak impact force and overall amount of translation during the impact are not affected by the extraocular muscles. Additionally, from the data presented in this study, the eyes with the extraocular muscles left intact do not rupture with a different injury pattern or display an increased risk for rupture than the eyes with the extraocular muscles transected. Therefore, it is believed that the effect of the extraocular muscles is not sufficient to drastically alter the response of the eye under dynamic impact. This information is useful to characterize the boundary conditions that dictate the eye response from blunt impact and can be used to define the biofidelity requirements for the impact response of synthetic eyes.  相似文献   

16.
Biological musculoskeletal system (MSK), composed of numerous bones, cartilages, skeletal muscles, tendons, ligaments etc., provides form, support, movement and stability for human or animal body. As the result of million years of selection and evolution, the biological MSK evolves to be a nearly perfect mechanical mechanism to support and transport the human or animal body, and would provide enormously rich resources to inspire engineers to innovate new technology and methodology to develop robots and mechanisms as effective and economical as the biological systems. This paper provides a general review of the current status of musculoskeletal biomechanics studies using both experimental and computational methods. This includes the use of the latest three-dimensional motion analysis systems, various medical imaging modalities, and also the advanced rigid-body and continuum mechanics musculoskeletal modelling techniques. Afterwards, several representative biomimetic studies based on ideas and concepts inspired from the structures and biomechanical functions of the biological MSK are dis- cussed. Finally, the major challenges and also the future research directions in musculoskeletal biomechanics and its biomimetic studies are proposed.  相似文献   

17.
    
A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators' hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body's biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approach.  相似文献   

18.
    
  相似文献   

19.
    
Acute subdural hematoma due to a bridging vein rupture is a devastating but rare injury. There has to date been no satisfactory biomechanical explanation for this infrequent but costly injury. We surmise that it may be associated with multiple head impacts. Though numerical models have been used to estimate vein strains in single impact events, none to date have examined the influence on localized brain strain of rapidly consecutive impacts. Using the Simulated Injury Monitor, we investigated the hypothesis that such double impacts can increase strain beyond that created by any single impact. Input to our parametric study comprised hypothetical biphasic rotational head accelerations producing a maximum angular velocity of 40 rad./s. In each of 19 simulations, two identical angular inputs are applied at right angles to each other but with time separations varying from 0 to 40 ms. For these double impacts, it has been generally found that strain in the region of the bridging veins is different, than what would be associated with any corresponding single impact. In some cases, the effect is to actually reduce the tissue strain. In others, the strain in the region of the bridging veins is increased markedly. The mechanistic explanation for the strain increase is that the tissue strain from the first impact has not diminished fully when strain from the second impact is initiated. Rapidly consecutive impacts could be a potential mechanism leading to vein rupture that warrants further investigation.  相似文献   

20.
    
Concussion in American football is a prevalent concern. Research has been conducted examining frequencies, location, and thresholds for concussion from impacts. Little work has been done examining how impact location may affect risk of concussive injury. The purpose of this research was to examine how impact site on the helmet and type of impact, affects the risk of concussive injury as quantified using finite element modelling of the human head and brain. A linear impactor was used to impact a helmeted Hybrid III headform in several locations and using centric and non-centric impact vectors. The resulting dynamic response was used as input for the Wayne State Brain Injury Model to determine the risk of concussive injury by utilizing maximum principal strain as the predictive variable. The results demonstrated that impacts that occur primarily to the side of the head resulted in higher magnitudes of strain in the grey and white matter, as well as the brain stem. Finally, commonly worn American football helmets were used in this research and significant risk of injury was incurred for all impacts. These results suggest that improvements in American football helmets are warranted, in particular for impacts to the side of the helmet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号