首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction, objectiveGait analysis has provided important information about the variability of gait for patients prior to and after total hip arthroplasty (THA). The objective of this research was to clarify how the method of exposure in total hip arthroplasty affects the variability of gait.Materials and methodGait analysis was performed at 0.8 m/s, 1.0 m/s, and 1.2 m/s on 25 patients with direct-lateral exposure (DL), 22 with antero-lateral exposure (AL) and 25 with posterior exposure (P) during total hip arthroplasty. The control group was represented by 45 healthy subjects of identical age. Gait analysis was performed pre-operatively and 3 and 6 months after the surgery. Gait parameter variability was characterized by the coefficient of variance (CV) of spatial–temporal parameters and by the mean coefficient of variance (MeanCV) of angular parameters.ResultsThe variability of gait tends to reach control values during the first 6 months of the postoperative period in all three patient groups. Six months after THA, in patients operated with DL and AL exposure the variability of gait differs significantly from control values; however, in patients operated with P exposure, the variability of spatial–temporal and angular parameters – except the rotation of pelvis – was similar to that of controls.Discussion, conclusionThe type of surgical technique significantly influences the variability of gait. Difference in the variability of angular parameters predicts gait instability and increased risk of falling after THA without the joint capsule preserved. Joint capsule preservation ensures a recovery of gait variability. It should be taken into account when compiling rehabilitation protocols. Differences related to the method of exposure should be considered when abandoning therapeutic aids.  相似文献   

2.
《IRBM》2022,43(5):447-455
ObjectivesThe deviation in gait cycle due to trunk acceleration and muscle activity on even and uneven inclined planes should be analyzed for the design of lower limb exoskeletons. This study compares the gait variability of gastrocnemius and medial hamstring muscle activity variation of twenty young male adults on inclined even and uneven planes.Material and methodsThe individuals walked on a long, 10° inclined even and uneven plane in both up-the-plane and down-the-plane directions at their preferred speed (average speed is 1.2 m/s). Gait variability during walking was calculated using an average standard deviation of trunk acceleration and the significance of change was calculated using two-way-ANOVA. For studying the difference between integrated electromyography (IEMG) values of walking on even and uneven planes, two parameters Normalized IEMG Percentage (NIP) and IEMG Variation Percentage (IVP) were chosen for the analysis.ResultsThe results strongly agree with the hypothesis that gait variability hikes in the vertical direction of subject with a p-value of 0.04. The IEMG range of medial-hamstring muscle while walking on even and uneven plane is not highly significant for swing (0.44) as well as stance phase (0.47). While walking on an inclined uneven plane, the response of gastrocnemius muscle indicated the variation of NIP between 14.31% to 64.63%. It was observed that NIP and IEMG values of medial-hamstring muscles during backward walking have a resemblance.ConclusionTrunk variability had a significant change in the vertical direction (V) and was insignificant in medial-lateral (ML) and anterior-posterior (AP) orientations for both even and uneven inclined planes during forward and reverse walking. The muscle activity of gastrocnemius and medial-hamstring muscles does not have sound variations while walking on the inclined uneven plane.  相似文献   

3.
This study evaluated the gait stability, variability, and complexity of healthy young adults on inclined surfaces. A total of 49 individuals walked on a treadmill at their preferred speed for 4 min at inclinations of 6%, 8%, and 10% in upward (UP) and downward (DOWN) conditions, and in horizontal (0%) condition. Gait variability was assessed using average standard deviation trunk acceleration between strides (VAR), gait stability was assessed using margin of stability (MoS) and maximum Lyapunov exponent (λs), and gait complexity was assessed using sample entropy (SEn). Trunk variability (VAR) increased in the medial-lateral (ML), anterior-posterior, and vertical directions for all inclined conditions. The SEn values indicated that movement complexity decreased almost linearly from DOWN to UP conditions, reflecting changes in gait pattern with longer and slower steps as inclination increased. The DOWN conditions were associated with the highest variability and lowest stability in the MoS ML, but not in λs. Stability was lower in UP conditions, which exhibited the largest λs values. The overall results support the hypothesis that inclined surfaces decrease gait stability and alter gait variability, particularly in UP conditions.  相似文献   

4.
Abstract

Purpose: Rhythmic auditory stimulation such as listening to music can alleviate gait bradykinesia in people with Parkinson disease (PD) by increasing spatiotemporal gait features. However, evidence about what specific kinematic alterations lead to these improvements is limited, and differences in responsiveness to cueing likely affect individual motor strategies. Self-generated cueing techniques, such as singing or mental singing, provide similar benefits but no evidence exists about how these techniques affect lower limb joint movement. In this study, we assessed immediate effects of external and self-generated cueing on lower limb movement trajectories during gait.

Methods: Using 3D motion capture, we assessed sagittal plane joint angles at the hip, knee, and ankle across 35 participants with PD, divided into responders (n?=?23) and non-responders (n?=?12) based on a clinically meaningful change in gait speed. Joint motion was assessed as overall range of motion as well as at two key time points during the gait cycle: initial contact and toe-off.

Results: Responders used both cue types to increase gait speed and induce increases in overall joint ROM at the hip while only self-generated cues also increased ROM at the ankle. Increased joint excursions for responders were also evident at initial contact and toe-off.

Conclusions: Our results indicate that self-generated rhythmic cues can induce similar increases in joint excursions as externally-generated cues and that some people may respond more positively than others. These results provide important insight into how self-generated cueing techniques may be tailored to meet the varied individual needs of people with PD.  相似文献   

5.
Background and Objectives: While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations. Methods: Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously. The musculoskeletal model consists of eight major muscle groups namely; soleus (SOL), gastrocnemius (GAS), tibialis anterior (TA), hamstrings (HAM), vasti (VAS), gluteus maximus (GLU), uniarticular hip flexors (iliopsoas, IP), and Rectus Femoris (RF). BWS was provided at levels of 0, 20, 40 and 60% during the simulations. In order to obtain a feasible set of muscle activities during subsequent gait cycles, an inverse dynamics algorithm along with a quadratic minimization algorithm was implemented. Results: The dynamic parameters of the robot assisted human gait such as joint angle trajectories, ground contact force (GCF), human limb joint torques and robot induced torques at different levels of BWS were derived. The patterns of muscle activities at variable BWS were derived and analysed. For most part of the gait cycle (GC) the muscle activation patterns are quite similar for all levels of BWS as is apparent from the mean of muscle activities for the complete GC. Conclusions: Effect of BWS variation during robot assisted gait on muscle activities was studied by developing dynamic simulation. It is expected that the proposed dynamic simulation approach will provide important inferences and information about the muscle function variations consequent upon a change in BWS during robot assisted gait. This information shall be quite important while investigating the influence of BWS intonation on neuromuscular parameters of interest during robotic gait training.  相似文献   

6.
The pathology’s impact on gait pattern may be overestimated by conventional gait indices (Gillette Gait Index – GGI, Gait Deviation Index – GDI, Gait Profile Score – GPS), since impairments’ consequences on kinematics may be amplified by a change in walking speed. The objectives of this study were to evaluate the influence of walking speed on the computation of gait indices and to propose a corrective method to cancel the effects of walking speed. Spatiotemporal parameters and kinematics of fifty-four asymptomatic participants (30 M/24 W, 37.9 ± 13.7 years, 72.8 ± 13.3 kg, 1.74 ± 0.10 m) were collected at four speed conditions (C1:[0,0.4] m s−1, C2:[0.4,0.8] m s−1, C3:[0.8,1.2] m s−1, C4:spontaneous). Four values of each index were computed for each trial using successively the four conditions as normative data repository. Mean values over all participants were statistically compared (paired t-tests, 95% confidence level). Indices values computed with normative at equivalent walking speed were not statistically different from reference values. Meanwhile, deviations appeared when the walking speed discrepancy between conditions and normative increased. These drifts related to walking speed mismatch have been quantified and fitting functions proposed. A correction was applied to indices. GGI was efficiently adjusted while GDI and GPS remain different from their reference values for C1 and C2. Gait indices must be interpreted cautiously in function of the normative data repository’s walking speed used for computation. Furthermore, a coupled use of conventional and corrected gait indices could lead to a better comprehension of the contribution of impairments and walking speed on gait deviations and overall gait quality.  相似文献   

7.
Ageing influences gait patterns which in turn can affect the balance control of human locomotion. Entropy-based regularity and complexity measures have been highly effective in analysing a broad range of physiological signals. Minimum toe clearance (MTC) is an event during the swing phase of the gait cycle and is highly sensitive to the spatial balance control properties of the locomotor system. The aim of this research was to investigate the regularity and complexity of the MTC time series due to healthy ageing and locomotors' disorders. MTC data from 30 healthy young (HY), 27 healthy elderly (HE) and 10 falls risk (FR) elderly subjects with balance problems were analysed. Continuous MTC data were collected and using the first 500 data points, MTC mean, standard deviation (SD) and entropy-based complexity analysis were performed using sample entropy (SampEn) for different window lengths (m) and filtering levels (r). The MTC SampEn values were lower in the FR group compared to the HY and HE groups for all m and r. The HY group had a greater mean SampEn value than both HE and FR reflecting higher complexity in their MTC series. The mean SampEn values of HY and FR groups were found significantly different for m = 2, 4, 5 and r = (0.1–0.9) × SD, (0.3–0.9) × SD and (0.3–0.9) × SD, respectively. They were also significant difference between HE and FR groups for m = 4–5 and r = (0.3–0.7) × SD, but no significant differences were seen between HY and HE groups for any m and r. A significant correlation of SampEn with SD of MTC was revealed for the HY and HE groups only, suggesting that locomotor disorders could significantly change the regularity or the complexity of the MTC series while healthy ageing does not. These results can be usefully applied to the early diagnosis of common gait pathologies.  相似文献   

8.
ObjectiveInvestigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults.MethodsData of 17 younger (21.47 ± 2.06 yr) and 18 older women (65.33 ± 3.14 yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO).ResultsApprehensive gait promoted greater activation of thigh muscles than normal gait (F = 5.34 and p = 0.007, for significant main effect of condition; RF, p = 0.002; VM, p < 0.001; VL, p = 0.003; and BF, p = 0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F = 4.05 and p = 0.019, for significant main effect of groups; VM/BF, p = 0.010; TA/GL, p = 0.007; and TA/SO, p = 0.002).ConclusionApprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people.  相似文献   

9.
The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results  相似文献   

10.
Gait analysis has provided important information concerning gait patterns and variability of gait in patients with knee osteoarthritis (OA) of varying severity. The objective of this study was to clarify how the variability of gait parameters is influenced by the severity of knee OA. Gait analysis was performed at three different controlled walking speeds in three groups of subjects with varying degrees of knee OA (20 healthy subjects with no OA and 90 patients with moderate or severe OA). The variability of gait parameters was characterized by the coefficient of variance (CV) of spatial-temporal parameters, as well as by the mean coefficient variance (MeanCV) of angular parameters. Based on our results, we conclude that the complexity of gait decreases if the walking speed differs from the self-selected speed. In patients with knee OA, the decreased variability of angular parameters on the affected side represents decreased joint flexibility. This leads to decreased consistency in movements of the lower limbs from stride-to-stride, as shown by increased variability of spatial-temporal parameters. Decreased joint flexibility and consistency of movement can be associated with decreased complexity of movement. Other joints of the kinetic chain, such as joints of the non-affected side and the pelvis, play an important role in compensation and adaptation of step-by step motion and in the ability of secure gait. Results suggest that the variability of gait associated with knee osteoarthritis is gender-dependent. During rehabilitation, particular attention must be paid to improving gait stability and proprioception and gender differences should be taken into account.  相似文献   

11.
Abstract

Purpose/aim of the study: An increase of hip abductor muscle strength contributes to the increase in gait speed. It is known that the rate of force development (RFD), an indicator of muscle strength, is increased by the combined use of low-intensity neuromuscular electrical stimulation (NMES) to the glutaeus medius (GM) and low-load resistance training (RT). However, it is unclear whether low-intensity neuromuscular electrical stimulation of the glutaeus medius during walking also increases the rate of force development. The aim of this study was to clarify whether NMES to the GM during gait modulates the RFD of the hip abductor muscles in healthy adults.

Materials and methods: Twenty-two healthy adults randomly received both gait with sub-motor threshold NMES and gait with sham NMES conditions. The RFD was assessed at pre- and post-intervention. A two-way repeated measures analysis of variance was used to analyse the effects of time and intervention.

Results: Gait with sub-motor threshold NMES condition significantly increased the RFD in shorter time interval (0–50 and 0–100?ms) compared to gait with sham NMES condition.

Conclusions: These findings suggest that the adding low-intensity NMES of the GM to gait is effective in increasing the RFD of the hip abductor muscles.  相似文献   

12.
Most quadruped reptiles,such as lizards,salamanders and crocodiles,swing their waists while climbing on horizontal or vertical surfaces.Accompanied by body movement,the centroid trajectory also becomes more of a zigzag path rather than a straight line.Inspired by gecko's gait and posture on a vertical surface,a gecko inspired model with one pendular waist and four active axil legs,which is called GPL model,is proposed.Relationship between the waist position,dynamic gait,and driving forces on supporting feet is analyzed.As for waist trajectory planning,a singular line between the supporting feet is found and its effects on driving forces are discussed.Based on the GPL model,it is found that a sinusoidal waist trajectory,rather than a straight line,makes the driving forces on the supporting legs smaller.Also,a waist close to the pygal can reduce the driving forces compared to the one near middle vertebration,which is in accord with gecko's body bending in the process of climbing.The principles of configuration design and gait planning are proposed based on theoretical analyses.Finally,a bio-inspired robot DracoBot is developed and both of the driving force measurements and climbing experiments reinforce theoretical analysis and the rationality of gecko's dynamic gait.  相似文献   

13.
Gait analysis has been widely used to examine the behavioral presentation of numerous neurological disorders. Thorough murine model evaluation of the subarachnoid hemorrhage (SAH)-associated gait deficits is missing. This study measures gait deficits using a clinically relevant murine model of SAH to examine associations between gait variability and SAH-associated gene expressions. A total of 159 dynamic and static gait parameters from the endovascular perforation murine model for simulating clinical human SAH were determined using the CatWalk system. Eighty gait parameters and the mRNA expression levels of 35 of the 88 SAH-associated genes were differentially regulated in the diseased models. Totals of 42 and 38 gait parameters correlated with the 35 SAH-associated genes positively and negatively with Pearson's correlation coefficients of >0.7 and <−0.7, respectively. p-SP1453 expression in the motor cortex in SAH animal models displays a significant correlation with a subset of gait parameters associated with muscular strength and coordination of limb movements. Our data highlights a strong correlation between gait variability and SAH-associated gene expression. p-SP1453 expression could act as a biomarker to monitor SAH pathological development and a therapeutic target for SAH.  相似文献   

14.
AimThe aim of this study is to construct and evaluate Pseudo-CT images (P-CTs) for electron density calculation to facilitate external radiotherapy treatment planning.BackgroundDespite numerous benefits, computed tomography (CT) scan does not provide accurate information on soft tissue contrast, which often makes it difficult to precisely differentiate target tissues from the organs at risk and determine the tumor volume. Therefore, MRI imaging can reduce the variability of results when registering with a CT scan.Materials and methodsIn this research, a fuzzy clustering algorithm was used to segment images into different tissues, also linear regression methods were used to design the regression model based on the feature extraction method and the brightness intensity values. The results of the proposed algorithm for dose-volume histogram (DVH), Isodose curves, and gamma analysis were investigated using the RayPlan treatment planning system, and VeriSoft software. Furthermore, various statistical indices such as Mean Absolute Error (MAE), Mean Error (ME), and Structural Similarity Index (SSIM) were calculated.ResultsThe MAE of a range of 45–55 was found from the proposed methods. The relative difference error between the PTV region of the CT and the Pseudo-CT was 0.5, and the best gamma rate was 95.4% based on the polar coordinate feature and proposed polynomial regression model.ConclusionThe proposed method could support the generation of P-CT data for different parts of the brain region from a collection of MRI series with an acceptable average error rate by different evaluation criteria.  相似文献   

15.
《Free radical research》2013,47(9):1108-1114
Abstract

Background. Physical performance measured by gait speed is being recognized as a major instrument for clinical evaluation in older adults, because it predicts physical frailty, loss of autonomy, hospitalization and decreased survival. Low-grade chronic inflammation and oxidative stress, mediated partly by the superoxide anion produced by NADPH oxidase, are closely linked and could be involved in age-related physical decline. Objective. To determine whether slow gait speed is associated with superoxide anion overproduction by NADPH oxidase and low-grade chronic inflammation. Design and setting. Observational study among the 280 elderly of an ambulatory geriatric care unit (191 women, 89 men, 79.9 ± 6.1 years old). Methods. Gait speed was evaluated by walking at self-chosen usual pace. Usual gait speed < 0.8 m/s was defined as slow gait speed. Superoxide anion production was evaluated using a lucigenin-based chemiluminescence method. Inflammation was evaluated by CRP, fibrinogen and leukocyte count. Results. Among the 280 participants, 179 (63.9%) walked with a gait speed < 0.8 m/s (slow walkers) and 101 (36.1%) with a gait speed ≥ 0.8 m/s. Superoxide production and inflammation markers, such as fibrinogen, were more important in slow walkers (p = 0.004 and p = 0.006, respectively). In multivariate analysis, superoxide anion overproduction and fibrinogen were independently associated with physical frailty assessed by slow gait speed (p = 0.028 and p = 0.007, respectively). Conclusion. Physical frailty in older people is associated with superoxide anion overproduction by NADPH oxidase and low-grade chronic inflammation.  相似文献   

16.
17.
Biomechanical investigation into locomotor pathology in commercial pigs is lacking despite this being a major concern for the industry. Different floor types are used in modern, intensive pig production systems at different stages of the pigs’ production cycle. The general perception holds that slatted and/or hard solid concrete surfaces are inferior to soft straw-covered floors regarding healthy musculoskeletal development. Previous studies have compared pigs housed on different floor types using clinical, subjective assessment of leg weakness and lameness. However, reliability studies generally report a low repeatability of clinical lameness scoring. The objective of this study was to quantitatively assess the long-term effect of pen floors, reflected in the biomechanical gait characteristics and associated welfare of the pigs. A cohort of 24 pigs housed on one of three different floor types was followed from 37 to 90 kg average liveweight, with gait analysis (motion capture) starting at 63 kg. The three floor types were fully slatted concrete, partly slatted concrete and deep straw-bedded surfaces, all located within the same building. Pigs underwent five repeated camera-based motion captures, 7 to 10 days apart, during which 3D coordinate data of reflective skin markers attached to leg anatomical landmarks were collected. Pigs walked on the same solid concrete walkway during captures. One-way ANOVA and repeated measures ANOVA were used to analyse the gait data. Results revealed changes over time in the spatiotemporal gait pattern which were similar in magnitude and direction for the pigs from different floor types. Significant increases in elbow joint flexion with age were observed in all pigs (P⩽0.050; +6°). There were few differences between floor groups, except for the step-to-stride ratio in the hind legs being more irregular in pigs housed on partly slatted floors (P=0.012; 3.6 times higher s.d.) compared with those on 5 to 10 cm straw-bedding in all pen areas. As the level of clinical problems was generally low in this cohort, it may be that floors elicit problems only when there is a primary predisposing factor increasing weakness in susceptible tissues.  相似文献   

18.
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18 ± 0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5–20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r2 = 0.13–0.73), these variables were only weakly correlated with oxygen consumption (r2 = 0.02–0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual’s energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP.  相似文献   

19.
Accelerometry-based gait analysis is widely recognised as a promising tool in healthcare and clinical settings since it is unobtrusive, inexpensive and capable of providing insightful information on human gait characteristics. In order to expand the application of this technology in daily environments, it is desirable to develop reliable gait measures and their extraction methods from the acceleration signal that can differentiate between normal and atypical gait. Important examples of such measures are gait cycle and gait-induced acceleration magnitude, which are known to be closely related to each other depending on each individual's physical condition. In this study, we derive a model equation with two parameters which captures the essential relationships between gait cycle and gait acceleration based on experiments and physical modelling. We also introduce as a new gait parameter a set of indexes to evaluate the synchronisation behaviour of gait timing. The function and utility of the proposed parameters are examined in 11 healthy subjects during walking under various selected conditions.  相似文献   

20.
Abstract

We evaluated the feasibility of a set of indexes based on ground reaction forces to discriminate between the degree of severity of spastic diplegia, identified via Gross Motor Function Classification System (GMFCS). A stepwise discriminant ordinal regression analysis performed on a sample of 58 children returned a subset of variables related to the ratio between braking and propulsive vertical forces and anteroposterior timings. Rather, parameters concerning bilateral symmetry were poorly discriminating. The relative simplicity of the selected indexes allows for their easy implementation on existing gait analysis applications for screening purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号