首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is concerned with characterizing the quasistatic mechanical behaviour of arterial tissue undergoing finite deformation through hyperelastic constitutive functions. Commonly the parameters of constitutive functions are established by a process of optimization based on experimental data. Instead we construct a finite element model of a representative volume element of the material and compute its homogenized response to a range of deformations. These data are then used to provide objective functions for optimizing the parameters of two analytical models from the literature.  相似文献   

2.
The aim of this work is to provide a numerical approach for the investigation of the mechanical behaviour of the heel pad region. A visco-hyperelastic model is formulated with regard to fat pad tissue, while a fibre-reinforced hyperelastic model is considered for the heel skin tissue. Bone components are defined by means of an orthotropic linear elastic model. Particular attention is paid to the evaluation of constitutive parameters within different models adopted in consideration of experimental tests data. Preliminarily, indentation tests on a skinless cadaveric foot are considered with regard to fat pad tissue. Indentation tests on an intact heel pad of a cadaveric foot are subsequently adopted for the final identification of constitutive parameters of fat pad and skin tissues. A numerical model of the rear foot is defined and different loading conditions are assumed according to experimental data. A comparison between experimental and numerical data leads to the evaluation of the real capability of the procedure to interpret the actual response of the rear foot.  相似文献   

3.
The aim of this work is to provide a numerical approach for the investigation of the mechanical behaviour of the heel pad region. A visco-hyperelastic model is formulated with regard to fat pad tissue, while a fibre-reinforced hyperelastic model is considered for the heel skin tissue. Bone components are defined by means of an orthotropic linear elastic model. Particular attention is paid to the evaluation of constitutive parameters within different models adopted in consideration of experimental tests data. Preliminarily, indentation tests on a skinless cadaveric foot are considered with regard to fat pad tissue. Indentation tests on an intact heel pad of a cadaveric foot are subsequently adopted for the final identification of constitutive parameters of fat pad and skin tissues. A numerical model of the rear foot is defined and different loading conditions are assumed according to experimental data. A comparison between experimental and numerical data leads to the evaluation of the real capability of the procedure to interpret the actual response of the rear foot.  相似文献   

4.
In this study, a constitutive law based on a nearly incompressible transversely isotropic hyperelastic potential is proposed to describe the mechanical behaviour of the anterior cruciate ligament (ACL). The constitutive formulation is valid for arbitrary kinematics (finite elasticity) and is thermodynamically admissible. Based on anatomic measurements performed on a human cadaveric knee specimen, a three-dimensional continuum finite element model of the ACL was developed. The numerical model was used to simulate clinical procedures such as the Lachman and drawer tests, which are performed to assess the existence and severity of an ACL injury. Finite element analyses showed that the two procedures have distinct effects on the behaviour of the ACL and provided new insights into the stress distributions. Moreover, good qualitative and quantitative agreement was found between the present study and results obtained experimentally in comparable conditions.  相似文献   

5.
This study describes the development of a constitutive law for the modelling of the periodontal ligament (PDL) and its practical implementation into a commercial finite element code. The constitutive equations encompass the essential mechanical features of this biological soft tissue: non-linear behaviour, large deformations, anisotropy, distinct behaviour in tension and compression and the fibrous characteristics. The approach is based on the theory of continuum fibre-reinforced composites at finite strain where a compressible transversely isotropic hyperelastic strain energy function is defined. This strain energy density function is further split into volumetric and deviatoric contributions separating the bulk and shear responses of the material. Explicit expressions of the stress tensors in the material and spatial configurations are first established followed by original expressions of the elasticity tensors in the material and spatial configurations. As a simple application of the constitutive model, two finite element analyses simulating the mechanical behaviour of the PDL are performed. The results highlight the significance of integrating the fibrous architecture of the PDL as this feature is shown to be responsible for the complex strain distribution observed.  相似文献   

6.
This study describes the development of a constitutive law for the modelling of the periodontal ligament (PDL) and its practical implementation into a commercial finite element code. The constitutive equations encompass the essential mechanical features of this biological soft tissue: non-linear behaviour, large deformations, anisotropy, distinct behaviour in tension and compression and the fibrous characteristics. The approach is based on the theory of continuum fibre-reinforced composites at finite strain where a compressible transversely isotropic hyperelastic strain energy function is defined. This strain energy density function is further split into volumetric and deviatoric contributions separating the bulk and shear responses of the material. Explicit expressions of the stress tensors in the material and spatial configurations are first established followed by original expressions of the elasticity tensors in the material and spatial configurations. As a simple application of the constitutive model, two finite element analyses simulating the mechanical behaviour of the PDL are performed. The results highlight the significance of integrating the fibrous architecture of the PDL as this feature is shown to be responsible for the complex strain distribution observed.  相似文献   

7.
A comprehensive study on the spherical indentation of hyperelastic soft materials is carried out through combined theoretical, computational, and experimental efforts. Four widely used hyperelastic constitutive models are studied, including neo-Hookean, Mooney–Rivlin, Fung, and Arruda–Boyce models. Through dimensional analysis and finite element simulations, we establish the explicit relations between the indentation loads at given indentation depths and the constitutive parameters of materials. Based on the obtained results, the applicability of Hertzian solution to the measurement of the initial shear modulus of hyperelastic materials is examined. Furthermore, from the viewpoint of inverse problems, the possibility to measure some other properties of a hyperelastic material using spherical indentation tests, e.g., locking stretch, is addressed by considering the existence, uniqueness, and stability of the solution. Experiments have been performed on polydimethylsiloxane to validate the conclusions drawn from our theoretical analysis. The results reported in this study should help identify the extent to which the mechanical properties of hyperelastic materials could be measured from spherical indentation tests.  相似文献   

8.
The highly nonlinear mechanical behaviour of soft tissues solicited within the physiological range usually involves degradation of the material properties. Mechanically, having these biostructures undergoing such stretch patterns may bring about pathological conditions related to the steady deterioration of both collagen fibres and material’s ground substance. Tissue and subject variability observed in the phenomenological mechanical characterisation of soft tissues often hinder the choice of the computational constitutive model. Therefore, this contribution brings forth a detailed overview of the constitutive implementation in a computational framework of anisotropic hyperelastic materials with damage. Surmounting the challenge posed by the mesh dependency pathology requires the incorporation of an integral-type non-local averaging, which seeks to include the effects of the microstructure in order to limit the localisation phenomena of the damage variables. By adopting this approach, one can make use of multiple developed material models available in the literature, a combination of those, or even propose new models within the same numerical framework. The numerical examples of three-dimensional displacement and force-driven boundary value problems highlight the possibility of using multiple material models within the same numerical framework. Particularities concerning the considered material models and the damage effect implications to represent the Mullins effect, induced anisotropy, hysteresis, and mesh dependency are discussed.  相似文献   

9.
The paper pertains to the analysis of the biomechanical behaviour of the periodontal ligament (PDL) by using a combined experimental and numerical approach. Experimental analysis provides information about a two-rooted pig premolar tooth in its socket with regard to morphological configuration and deformational response. The numerical analysis developed for the present investigation adopts a specific anisotropic hyperelastic formulation, accounting for tissue structural arrangement. The parameters to be adopted for the PDL constitutive model are evaluated with reference to data deducted from experimental in vitro tests on different specimens taken from literature. According to morphometric data relieved, solid models are provided as basis for the development of numerical models that adopt the constitutive formulation proposed. A reciprocal validation of experimental and numerical data allows for the evaluation of reliability of results obtained. The work is intended as preliminary investigation to study the correlation between mechanical status of PDL and induction to cellular activity in orthodontic treatments.  相似文献   

10.
Published data on the mechanical performance of the human lens capsule when tested under uniaxial and biaxial conditions are reviewed. It is concluded that two simple phenomenological constitutive models (namely a linear elastic model and a Fung-type hyperelastic model) are unable to provide satisfactory representations of the mechanical behaviour of the capsule for both of these loading conditions. The possibility of resolving these difficulties using a structural constitutive model for the capsule, of a form that is inspired by the network of collagen IV filaments that exist within the lens capsule, is explored. The model is implemented within a rectangular periodic cell. Prescribed stretches are imposed on the periodic cell and the network is allowed to deform in a non-affine manner. The performance of the constitutive model correlates well with previously published test data. One possible application of the model is in the development of a multi-scale analysis of the mechanics of the human lens capsule.  相似文献   

11.
Skeletal muscles are responsible for the relative motion of the bones at the joints and provide the required strength. They exhibit highly nonlinear mechanical behaviour and are described by nonlinear hyperelastic constitutive relations. It is distinct from other biological soft tissue. Its hyperelastic or viscoelastic behaviour is modelled by using CE, SEE, and PEE. Contractile element simulates the behaviour of skeletal muscle when it is subjected to eccentric and concentric contraction. This research aims to estimate the stress induced in skeletal muscle in eccentric and concentric contraction with respect to the predefined strain. With the use of mathematical model for contraction of skeletal muscle for eccentric and concentric contraction, the stress induced in the skeletal muscle is estimated in this research. Mathematical model is developed for the muscle using EMG signals and Force-velocity relationship calculated. With the use of force-velocity of contraction of muscle, mathematical model is developed. This can be useful to understand the mechanical behaviour of skeletal muscles in eccentric and concentric contraction with clinical relevance. Authors are further working to develop the mathematical model with torsion force with proper activation function of muscle and experimentation for extraction of the anisotropic mechanical properties of skeletal muscle.  相似文献   

12.
The mechanical behavior of soft tissue demonstrates a number of complex features including nonlinearity, anisotropy, viscoelasticity, and growth. Characteristic features of the time-dependent and anisotropic behavior are related to the properties of various components of the tissue such as fibrous collagen and elastin networks, large proteins and sugars attached to these networks, and interstitial fluid. Attempts to model the elastic behavior of these tissues based on assumptions about the behavior of the underlying constituents have been reasonably successful, but the essential addition of viscoelasticity to these models has been met with varying success. Here, a new rheological network model is proposed using, as its basis, an orthotropic hyperelastic constitutive model for fibrous tissue and a viscoelastic reptation model for soft materials. The resulting model has been incorporated into numerical and computational models, and is shown to capture the mechanical behavior of soft tissue in various modes of deformation including uniaxial and biaxial tension and simple shear.  相似文献   

13.
A model of the mechanical behaviour of soft connective tissue has been developed by considering the role of the collagen and glycosaminoglycan (GAG) components within the tissue in order to examine the mechanism by which a variation in the GAG components may exert a control over the mechanical properties of the tissue. It is proposed that the strain energy stored within the collagen fibrils of the loaded tissue can be transferred into a potential field created by the charged GAG components and their electrostatic interaction with the collagen fibrils. A fundamental mechanical unit is described to simulate this energy transfer and a combination of such units is used to represent the tissue. The computer implementation of the proposed tissue model shows it to reproduce many features which have been recognised in the rate dependent mechanical behaviour of soft tissues. These include the characteristic non-linearity of the force-deformation behaviour and the approximate invariance of the stress relaxation behaviour with deformation. The model is also consistent with earlier constitutive representations of tissue behaviour.  相似文献   

14.
The healing of wounds is a complex process and the contraction of the resulting scar can have a negative impact on the neighbouring skin. A finite element model of skin simulating the contraction of a scar and deformation of the surrounding skin is presented. The skin is represented by an orthotropic–viscoelastic constitutive law, which is validated against experimental data in the literature. A simplified experimental model of a contracting scar in real skin is also developed. The pattern and size of the wrinkles formed around the contracting scar in the finite element model compare favourably with those formed in the experimental model. The orthotropic nature of skin plays a significant role in the behaviour of skin around scars—the wrinkles have a preferential orientation that corresponds to a direction perpendicular to the Langer's lines in the skin. The pre-stress in skin (a property that is ignored in many skin models) is shown to be an important factor in wrinkle formation around scars. The proposed model can be used to analyse the suturing and closure of wounds of various shapes.  相似文献   

15.
This paper presents a procedure for characterising the mechanical properties of skin using stochastic inverse identification. It is based on the minimisation of a cost function relative to the comparison between experimental suction experiments and their corresponding finite element models. Two different models are compared: a classical single-layer approach and a dual-layer medium which account for both the dermis and the hypodermis. Finite element results are used to construct the pre-optimisation database which is required for the inverse analysis. To compare the calculations, the entire identification is based on a dual-parameter optimisation procedure: for the single-layer approach a quadratic hyperelastic constitutive equation is used, whereas for the dual-layer medium a simple neo-Hookean potential is used. Theoretical conclusions, which are developed first, are then compared with actual case studies.  相似文献   

16.
Finite element analysis has proven to be a viable method for assessing many structure-function relationships in the human lumbar spine. Several validated models of the spine have been published, but they typically rely on commercial packages and are difficult to share between labs. The goal of this study is to present the development of the first open-access models of the human lumbar spine in FEBio. This modeling framework currently targets three deficient areas in the field of lumbar spine modeling: 1) open-access models, 2) accessibility for multiple meshing schemes, and 3) options to include advanced hyperelastic and biphasic constitutive models.  相似文献   

17.
This work deals with the development and implementation of a new fatigue model for simulating fatigue effects in skeletal muscles. Basic idea of this modelling strategy is an approach that divides the fibres of a muscle into three groups: fibres in the active state, those that are already fatigued and fibres in the resting state. All fibres are able to switch between the different groups by defining adequate rates. In this way a continuous transfer of fibres between those three states has been described. Rooted on an incompressible, hyperelastic constitutive law with transversely isotropic characteristics the fatigue model has been implemented in the framework of the finite element method. Numerical examples are given in order to illustrate the ability of this model. Further, we validate the model by fatigue experiments of the rat soleus muscle. In doing so, it proves that the model is able to predict physiological observations and mechanical test results.  相似文献   

18.
Coronary artery disease is responsible for almost 30% of all deaths worldwide. The saphenous vein and umbilical vein (UV) are the most common veins using for treatment as a coronary artery bypass graft (CABG). The mechanical properties of UV belonging to its long-term patency for CABG are very important. However, there is a lack of knowledge on the linear elastic and nonlinear hyperelastic mechanical properties of the UV. In this study, three stress definitions (second Piola–Kichhoff stress, engineering stress and true stress) and four strain definitions (Almansi–Hamel strain, Green–St Venant strain, engineering strain and true strain) are used to determine the elastic modulus, maximum stress and strain of eight human UVs under circumferential loading. The nonlinear mechanical behaviour of the UV is computationally investigated using Mooney–Rivlin hyperelastic model. A numerical finite element analysis is also carried out to simulate the constitutive modelling versus its numerical results. The results show that the Almansi–Hamel strain definition overestimates the elastic modulus while Green–St Venant strain definition underestimates the elastic modulus at different stress definitions. The true stress–true strain definition, which gives more accurate measurements of the tissue's response using the instantaneous values, reveals the Young's modulus and maximum stress of 2.18 and 6.01 MPa, respectively. The Mooney–Rivlin material model is well represented by the nonlinear mechanical behaviour of the UV. The findings of this study could have implications not only for understanding the extension and rupture mechanism of UV but also for interventions and surgeries, including balloon angioplasty, bypass and stenting.  相似文献   

19.
20.
This work was concerned with the numerical simulation of the behaviour of aortic valves whose material can be modelled as non-linear elastic anisotropic. Linear elastic models for the valve leaflets with parameters used in previous studies were compared with hyperelastic models, incorporating leaflet anisotropy with pronounced stiffness in the circumferential direction through a transverse isotropic model. The parameters for the hyperelastic models were obtained from fits to results of orthogonal uniaxial tensile tests on porcine aortic valve leaflets. The computational results indicated the significant impact of transverse isotropy and hyperelastic effects on leaflet mechanics; in particular, increased coaptation with peak values of stress and strain in the elastic limit. The alignment of maximum principal stresses in all models follows approximately the coarse collagen fibre distribution found in aortic valve leaflets. The non-linear elastic leaflets also demonstrated more evenly distributed stress and strain which appears relevant to long-term scaffold stability and mechanotransduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号