首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel topology optimization model based on homogenization methods was developed for predicting bone density distribution and anisotropy, assuming the bone structure to be a self-optimizing biological material which maximizes its own structural stiffness. The feasibility and efficiency of this method were tested on a 2D model for a proximal femur under single and multiple loading conditions. The main aim was to compute homogenized optimal designs using an optimal laminated microstructure. The computational results showed that high bone density levels are distributed along the diaphysis and form arching struts within the femoral head. The pattern of bone density distribution and the anisotropic bone behavior predicted by the model in the multiple load case were both in good agreement with the structural architecture and bone density distribution occurring in natural femora. This approach provides a novel means of understanding the remodeling processes involved in fracture repair and the treatment of bone diseases.  相似文献   

2.
In this work, a novel anisotropic material law for the mechanical behaviour of the bone tissue is proposed. This new law, based on experimental data, permits to correlate the bone apparent density with the obtained level of stress. Combined with the proposed material law, a biomechanical model for predicting bone density distribution was developed, based on the assumption that the bone structure is a gradually self-optimising anisotropic biological material that maximises its own structural stiffness. The strain and the stress field required in the iterative remodelling process are obtained by means of an accurate meshless method, the Natural Neighbour Radial Point Interpolation Method (NNRPIM). Comparing with other numerical approaches, the inclusion of the NNRPIM presents numerous advantages such as the high accuracy and the smoother stress and strain field distribution. The natural neighbour concept permits to impose organically the nodal connectivity and facilitates the analysis of convex boundaries and extremely irregular meshes. The viability and efficiency of the model were tested on several trabecular benchmark patch examples. The results show that the pattern of the local bone apparent density distribution and the anisotropic bone behaviour predicted by the model for the microscale analysis are in good agreement with the expected structural architecture and bone apparent density distribution.  相似文献   

3.
A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When both external and internal bone remodelling were simulated simultaneously, the initial rectangular design domain with a regularly distributed mass reduced gradually to an optimal state with external shape and internal structure similar to those of the natural proximal femur.  相似文献   

4.
A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When both external and internal bone remodelling were simulated simultaneously, the initial rectangular design domain with a regularly distributed mass reduced gradually to an optimal state with external shape and internal structure similar to those of the natural proximal femur.  相似文献   

5.
The purpose of the present study was to describe the structural density and geometry of the bone, as well as its sensitivity to the resolution of finite element discretisation. The study introduces a novel way to validate biomechanical model of the bone by experimental modal analysis. The structural density and geometry of the model was obtained from a composite bone. A detailed investigation of the weight dependence of the bone on the mesh resolution was performed to obtain the best match with the real weight of the tested bone. The computational model was compared with the experimental results obtained from the modal analysis. The overall changes of the modal properties and bone weight in the model caused by different mesh resolutions and order of approximation were below 10%, despite the bone was modelled with simple isotropic material properties. The experimental modal analysis shows a great potential to be a robust verification tool of computational biomechanical models because it provides boundary conditions–free results. The sensitivity analysis revealed that the linear approximation of the density field is not suitable for the modelling of the modal response of composite bone.  相似文献   

6.
This work presents a computational model for bone remodelling around cementless stems. The problem is formulated as a material optimisation problem considering the bone and stem surfaces to be in contact. To emphasise the behaviour of the bone/stem interface, the computer model detects the existence of bone ingrowth during the remodelling; consequently, the contact conditions are changed for a better interface simulation. The trabecular bone is modelled as a strictly orthotropic material with equivalent properties computed by homogenisation. The distribution of bone relative density is obtained by the minimisation of a function that considers both the bone structural stiffness and the biological cost associated with metabolic maintenance of bone tissue. The situation of multiple load conditions is considered. The remodelling law, obtained from the necessary conditions for an optimum, is derived analytically from the optimisation problem and solved numerically using a suitable finite element mesh. The formulation is applied to an implanted femur. Results of bone density and ingrowth distribution are obtained for different coating conditions. Bone ingrowth does not occur over the entire coated surfaces. Indeed, we observed regions where separation or high relative displacement occurs that preclude bone ingrowth attachment. This prediction of the model is consistent with clinical observations of bone ingrowth. Thus, this model, which detect bone ingrowth and allow modification of the interface conditions, are useful for analysis of existing stems as well as design optimisation of coating extent and location on such stems.  相似文献   

7.
Natural biological materials usually present a hierarchical arrangement with various structural levels. The biomechanical behavior of the complex hierarchical structure of bone is investigated with models that address the various levels corresponding to different scales. Models that simulate the bone remodeling process concurrently at different scales are in development. We present a multiscale model for bone tissue adaptation that considers the two top levels, whole bone and trabecular architecture. The bone density distribution is calculated at the macroscale (whole bone) level, and the trabecular structure at the microscale level takes into account its mechanical properties as well as surface density and permeability. The bone remodeling process is thus formulated as a material distribution problem at both scales. At the local level, the biologically driven information of surface density and permeability characterizes the trabecular structure. The model is tested by a three-dimensional simulation of bone tissue adaptation for the human femur. The density distribution of the model shows good agreement with the actual bone density distribution. Permeability at the microstructural level assures interconnectivity of pores, which mimics the interconnectivity of trabecular bone essential for vascularization and transport of nutrients. The importance of this multiscale model relays on the flexibility to control the morphometric parameters that characterize the trabecular structure. Therefore, the presented model can be a valuable tool to define bone quality, to assist with diagnosis of osteoporosis, and to support the development of bone substitutes.  相似文献   

8.
The study aimed to develop efficient techniques with different novel graft structures to enhance the treatment of acetabular bone deficiency.The inhomogeneous material properties Finite Element Analysis(FEA)model was reconstructed according to computed tomography images based on a healthy patient without any peri-acetabular bony defect according to the Ameri-can Academy of Orthopedic Surgeons(AAOS).The FEA model of acetabular bone deficiency was performed to simulate and evaluate the mechanical performances of the grafts in different geometric structures,with the use of fixation implants(screws),along with the stress distribution and the relative micromotion of graft models.The stress distribution mainly con-centrated on the region of contact of the screws and superolateral bone.Among the different structures,the mortise-tenone structure provided better relative micromotion,with suitable biomechanical property even without the use of screws.The novel grafting structures could provide sufficient biomechanical stability and bone remodeling,and the mortise-tenone structure is the optimal treatment option for acetabulum reconstruction.  相似文献   

9.
Load-bearing biological materials such as shell, mineralized tendon and bone exhibit two to seven levels of structural hierarchy based on constituent materials (biominerals and proteins) of relatively poor mechanical properties. A key question that remains unanswered is what determines the number of hierarchical levels in these materials. Here we develop a quasi-self-similar hierarchical model to show that, depending on the mineral content, there exists an optimal level of structural hierarchy for maximal toughness of biocomposites. The predicted optimal levels of hierarchy and cooperative deformation across multiple structural levels are in excellent agreement with experimental observations.  相似文献   

10.
This study aimed to develop and validate a finite element (FE) model of a human clavicle which can predict the structural response and bone fractures under both axial compression and anterior–posterior three-point bending loads. Quasi-static non-injurious axial compression and three-point bending tests were first conducted on a male clavicle followed by a dynamic three-point bending test to fracture. Then, two types of FE models of the clavicle were developed using bone material properties which were set to vary with the computed tomography image density of the bone. A volumetric solid FE model comprised solely of hexahedral elements was first developed. A solid-shell FE model was then created which modelled the trabecular bone as hexahedral elements and the cortical bone as quadrilateral shell elements. Finally, simulations were carried out using these models to evaluate the influence of variations in cortical thickness, mesh density, bone material properties and modelling approach on the biomechanical responses of the clavicle, compared with experimental data. The FE results indicate that the inclusion of density-based bone material properties can provide a more accurate reproduction of the force–displacement response and bone fracture timing than a model with uniform bone material properties. Inclusion of a variable cortical thickness distribution also slightly improves the ability of the model to predict the experimental response. The methods developed in this study will be useful for creating subject-specific FE models to better understand the biomechanics and injury mechanism of the clavicle.  相似文献   

11.
A modification to an existing mathematical model is described, which permits the determination of subject-specific inertia parameters for wobbling and rigid masses of female body segments. The model comprises segment-specific soft tissue, bone, and lung components. A total of 59 geometric solids (40 soft tissue, 17 bone, 2 lung) were used to represent the body components. Ninety-five anthropometric measurements were collected from 7 female participants and were used to develop and evaluate the model. The success of the model is evaluated using predicted mass and mass distribution. The overall absolute accuracy in predicted whole body mass was better than 3.0%, with a maximum error of 4.9%. The appropriateness of the cadaver-based density values used in the model is addressed and the accuracy of the component inertia model in relation to uniform density models is discussed. The model offers a novel approach for determining component inertia parameters, which have been used successfully in a wobbling mass model to produce realistic kinetic analyses of drop-landings.  相似文献   

12.
Julius Wolff originally proposed that trabecular bone was influenced by mechanical stresses during the formative processes of growth and repair such that trabeculae were required to intersect at right angles. In this work, we have developed an analytical parametric microstructural model, which captures this restriction. Using homogenisation theory, a global material model was obtained. An optimal structure constructed of the homogenised material could then be found by optimising a cost function accounting for both the structural stiffness and the biological cost associated with metabolic maintenance of the bone tissue. The formulation was applied to an example problem of the proximal femur. Optimal densities and orientations were obtained for single load cases. The situation of multiple loads was also considered. In this case, we observe that the alignment of principal strains with the material orthotropy direction is, in general, not possible for all load cases. Thus less restrictive microstructures (nonorthotropic) will yield higher structural stiffnesses than strictly orthotropic microstructures.  相似文献   

13.
A simple and efficient numerical method for predicting the remodelling of adaptive materials and structures under applied loading was presented and implemented within a finite element framework. The model uses the trajectorial architecture theory of optimisation to predict the remodelling of material microstructure and structural organisation under mechanical loading. We used the proposed model to calculate the density distribution of proximal femur in the frontal plane. The loading considered was the hip joint contact forces and muscular forces at the attachment sites of the muscles to the bone. These forces were estimated from a separate finite element calculation using a heterogeneous three-dimensional model of the proximal femur. The density distributions obtained by this procedure has a qualitative similarity with in vivo observations. Solutions displayed the characteristic high-density channels that are evident in the Dual X-ray Absorptiometry scan. There is also evidence of the intramedullary canal, as well as low-density regions in the femoral neck. Several parametric studies were carried out to highlight the advantages of the proposed method, which includes fast convergence and low-computational cost. The potential applications of the proposed method in predicting bone structural remodelling in cancer are also briefly discussed.  相似文献   

14.
It has been recently suggested that mechanical loads applied at frequencies close to the natural frequencies of bone could enhance bone apposition due to the resonance phenomenon. Other applications of bone modal analysis are also suggested. For the above-mentioned applications, it is important to understand how patient-specific bone shape and density distribution influence the natural frequencies of bones. We used finite element models to study the effects of bone shape and density distribution on the natural frequencies of the femur in free boundary conditions. A statistical shape and appearance model that describes shape and density distribution independently was created, based on a training set of 27 femora. The natural frequencies were then calculated for different shape modes varied around the mean shape while keeping the mean density distribution, for different appearance modes around the mean density distribution while keeping the mean bone shape, and for the 27 training femora. Single shape or appearance modes could cause up to 15% variations in the natural frequencies with certain modes having the greatest impact. For the actual femora, shape and density distribution changed the natural frequencies by up to 38%. First appearance mode that describes the general cortical bone thickness and trabecular bone density had one of the strongest impacts. The first appearance mode could therefore provide a sensitive measure of general bone health and disease progression. Since shape and density could cause large variations in the calculated natural frequencies, patient-specific FE models are needed for accurate estimation of bone natural frequencies.  相似文献   

15.
This study aimed to predict the distribution of bone trabeculae, as a density change per unit time, around a dental implant based on applying a selected mathematical remodelling model. The apparent bone density change as a function of the mechanical stimulus was the base of the applied remodelling model that describes disuse and overload bone resorption. The simulation was tested in a finite element model of a screw-shaped dental implant in an idealised bone segment. The sensitivity of the simulation to different mechanical parameters was investigated; these included element edge length, boundary conditions, as well as direction and magnitude of the implant loads. The alteration in the mechanical parameters had a significant influence on density distribution and model stability, in particular at the cortical bone region. The remodelling model could succeed to achieve trabeculae-like structure around osseointegrated dental implants. The validation of this model to a real clinical case is required.  相似文献   

16.
This study aimed to predict the distribution of bone trabeculae, as a density change per unit time, around a dental implant based on applying a selected mathematical remodelling model. The apparent bone density change as a function of the mechanical stimulus was the base of the applied remodelling model that describes disuse and overload bone resorption. The simulation was tested in a finite element model of a screw-shaped dental implant in an idealised bone segment. The sensitivity of the simulation to different mechanical parameters was investigated; these included element edge length, boundary conditions, as well as direction and magnitude of the implant loads. The alteration in the mechanical parameters had a significant influence on density distribution and model stability, in particular at the cortical bone region. The remodelling model could succeed to achieve trabeculae-like structure around osseointegrated dental implants. The validation of this model to a real clinical case is required.  相似文献   

17.
Power density distribution inside a water sample placed between two parallel lossy dielectric plates (Polystyrene) was calculated using Fresnel equations for the frequency range of 42.25-53.57 GHz. Due to the multiple internal reflections from the sample boundaries, the distribution of the power density within the thin sample is more uniform than that within a semi-infinite medium. The power density in a sample depends on the thicknesses of the sample and the adjacent dielectric plates. For the given frequency range the sample thickness optimal for power density uniformity varies between 0.28 and 0.33 mm. The front plate has a significant effect on the magnitude of the power density within the sample but little effect on the power density distribution. The thicker the rear plate, the greater is the non uniformity of the power density distribution within the sample. Based on the calculated data, we determined the dimension of an exposure chamber providing the optimal power density distribution uniformity for mm-wave irradiation.  相似文献   

18.
It has been proposed that the orthotropic elastic constants of cancellous bone depend upon a tensorial measure of anisotropy called fabric as well as the tissue's structural density. Cowin (1985, Mechanics Mater, 4, 137-147; 1986, J. biomech. Engng 108, 83-88) developed explicit relationships for the elastic constant, structural density and fabric relationship. In this study the orthotropic elastic moduli, structural density, and fabric components were measured for 11 cancellous bone specimens from five bovine femora and for 75 specimens from three human proximal tibiae and fitted to these relationships using a least squares analysis. The relationships explained between 72 and 94% of the variance in the elastic constants. The relationships between the elastic constants and squared or cubed power functions of structural density had better predictive value over the entire distribution of the data than did expressions with linear functions of structural density.  相似文献   

19.
Direct search techniques for the optimal design of biomechanical devices are computationally intensive requiring many iterations before converging to a global solution. This, along with the incorporation of environmental variables such as multiple loading conditions and bone properties, makes direct search techniques infeasible. In this study, we introduced new methods that are based on the statistical design and analysis of computer experiments to account efficiently for environmental variables. Using data collected at a relatively small set of training sites, the method employs a computationally inexpensive predictor of the structural response that is statistically motivated. By using this predictor in place of the simulator (e.g., finite element model), a sufficient number of iterations can be performed to facilitate the optimization of the complex system. The applicability of these methods was demonstrated through the design of a femoral component for total hip arthroplasty incorporating variations in joint force orientation and cancellous bone properties. Beams on elastic foundation (BOEF) finite element models were developed to simulate the structural response. These simple models were chosen for their short computation time. This allowed us to represent the actual structural response surface by an exhaustive enumeration of the design and environmental variable space, and provided a means by which to validate the statistical predictor. We were able to predict the structural response and the optimal design accurately using only 16 runs of the computer code. The general trends predicted by the BOEF models were in agreement with previous three-dimensional finite element computer simulations, and experimental and clinical results, which demonstrated that the important features of intramedullary fixation systems were captured. These results indicate that the statistically based optimization methods are appropriate for optimization studies using computationally demanding models.  相似文献   

20.
Finite element analyses, with increasing levels of detail and complexity, are becoming effective tools to evaluate the performance of joint replacement prostheses and to predict the behaviour of bone. As a first step towards the study of the complications of shoulder arthroplasty, the aim of this work was the development and validation of a 3D finite element model of an intact scapula for the prediction of the bone remodelling process based on a previously published model that attempts to follow Wolff's law. The boundary conditions applied include full muscle and joint loads taken from a multibody system of the upper limb based on the same subject whose scapula was here analysed. To validate the bone remodelling simulations, qualitative and quantitative comparisons between the predicted and the specimen's bone density distribution were performed. The results showed that the bone remodelling model was able to successfully reproduce the actual bone density distribution of the analysed scapula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号