首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are interested in studying the genesis of a very common pathology: the human inguinal hernia. How the human inguinal hernia appears is not definitively clear, but it is accepted that it is caused by a combination of mechanical and biochemical alterations, and that muscular simulation plays an important role in this. This study proposes a model to explain how some physical parameters affect the ability to simulate the region dynamically and how these parameters are involved in generating inguinal hernias. We are particularly interested in understanding the mechanical alterations in the inguinal region because little is known about them or how they behave dynamically. Our model corroborates the most important theories regarding the generation of inguinal hernias and is an initial approach to numerically evaluating this affection.  相似文献   

2.
Simulating the muscular system has many applications in biomechanics, biomedicine and the study of movement in general. We are interested in studying the genesis of a very common pathology: human inguinal hernia. We study the effects that some biomechanical parameters have on the dynamic simulation of the region, and their involvement in the genesis of inguinal hernias. We use the finite element method (FEM) and current models for the muscular contraction to determine the deformed fascia transversalis for the estimation of the maximum strain. We analysed the effect of muscular tissue density, Young's modulus, Poisson's coefficient and calcium concentration in the genesis of human inguinal hernia. The results are the estimated maximum strain in our simulations, has a close correlation with experimental data and the accepted commonly models by the medical community. Our model is the first study of the effect of various biological parameters with repercussions on the genesis of the inguinal hernias.  相似文献   

3.
Calprotectin is one of the most abundant proteins of neutrophil granulocytes. It is released upon neutrophil activation and is considered a sensitive and clinically useful marker for neutrophil-mediated inflammation, including bacterial infections. However, early kinetics of calprotectin activation following inflammatory activation has hitherto been unknown. The aim of the present study was to determine the early phase of the kinetics of calprotectin, in comparison with the inflammatory markers CRP, IL-6, TNF-α, and procalcitonin, in plasma following a standardized temporary mild inflammatory response, using uncomplicated inguinal hernia surgery as a model. The study cohort consisted of 17 adult patients (15 male and 2 female) undergoing elective surgery for hernia. Values of calprotectin increased significantly at 2 h following surgery, and continued to increase to reach the highest level at 24–36 h after surgery, values still not exceeding upper normal reference level. This contrasts to IL-6 and CRP, for which an elevation was found first later, 4 h and 24–36 h post-surgery, respectively, for IL-6, and CRP. No significant increase was seen for TNF-α, or procalcitonin. The data demonstrate a very rapid and significant but modest increase in calprotectin following induction of mild inflammation, supporting that calprotectin can be useful for early detection of inflammatory response.  相似文献   

4.
5.
Polypropylene mesh is the most widely used material in inguinal hernia repair. Although polypropylene mesh is known as an inert material, it is experimentally proven that mesh generates a chronic inflammatory tissue reaction. The aim of the present study was to investigate the long-term effects of polypropylene mesh material used in inguinal hernia operations on testicular function, testicular nitric oxide (NO) metabolism and germ cell-specific apoptosis in rats. The study comprised 40 male rats that were randomly allocated into two groups. In group 1, the left spermatic cord was elevated and a 0.5 x 1 cm polypropylene mesh was placed behind the left inguinal spermatic cord and group 2 consisted of the sham-operated controls. Blood samples were taken at 6 months preoperatively and postoperatively after to assess luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels for hormonal evaluation. Testicular NO was evaluated by the Griess method, apoptosis by a TUNEL method and inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) expressions by immunohistochemical staining. Mild (+) eNOS expression was observed in all specimens. Mild (+) iNOS expression was only detected in ipsilateral testis of the mesh-implanted study group. Apoptotic cells were not detected in any samples. We are of the opinion that long-term polypropylene mesh implantation has no effect on testicular hormonal function and only a limited effect on nitric oxide levels and this effect is not sufficient to cause apoptosis in testis that could lead to infertility. It seems that mesh implantation is a reliable method in inguinal hernia repair; however, further work is required by more sensitive methods to fully elucidate the potential testicular damage.  相似文献   

6.
Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) and plasmalemmal Ca(2+)-ATPase (PMCA) activities in cremaster muscles and sacs, which have been subjected to different autonomic tonuses, were determined and compared. Samples of cremaster muscles and sacs associated with male or female inguinal hernia, hydrocele or undescended testis were obtained from children during operations and activities of SERCA and PMCA were determined. While highest SERCA and PMCA activities were encountered among cremaster muscles and sacs associated with undescended testis, least activities were encountered among structures associated with hydrocele. The alterations in SERCA and PMCA activities in cremaster muscles associated with undescended testis appear to reflect the attempts at maintaining the levels of cytosolic calcium. Despite similar total calcium contents, lower SERCA and PMCA activities were found in sacs associated with hydrocele compared to those associated with undescended testis suggest a difference among the levels of cytosolic calcium.  相似文献   

7.
Ionic Polymer-Metal Composites (IPMC) is an emerging class of Electro-Active Polymer (EAP) materials. IPMC has attractive features, such as high sensitivity and light weight, which are useful for developing novel designs in the fields of bionic actuators, artificial muscles and dynamic sensors. A Finite Element (FE) model was developed for simulating the dynamic electro-mechanical response of an IPMC structure under an external voltage input. A lumped Resistor-Capacitor (RC) model was used to describe the voltage-to-current relationship of a Nafion IPMC film for the computation of electric field intensity. Moreover, the viscoelastic property of the IPMC film was considered in the model and the non-uniform bending behavior was also taken into account. Based on the proposed model and the assumption that the thicknesses of the two electrodes are the same and uniform, the optimal coating thickness of the IPMC electrode was determined. It was demonstrated that the dynamic electro-mechanical response of the IPMC structure can be predicted by the proposed FE model, and the simulation results were in good agreement with the experimental findings.  相似文献   

8.
In this paper, the accuracy of non-linear finite element computations in application to surgical simulation was evaluated by comparing the experiment and modelling of indentation of the human brain phantom. The evaluation was realised by comparing forces acting on the indenter and the deformation of the brain phantom. The deformation of the brain phantom was measured by tracking 3D motions of X-ray opaque markers, placed within the brain phantom using a custom-built bi-plane X-ray image intensifier system. The model was implemented using the ABAQUSTM finite element solver. Realistic geometry obtained from magnetic resonance images and specific constitutive properties determined through compression tests were used in the model. The model accurately predicted the indentation force–displacement relations and marker displacements. Good agreement between modelling and experimental results verifies the reliability of the finite element modelling techniques used in this study and confirms the predictive power of these techniques in surgical simulation.  相似文献   

9.
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force–time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young’s modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young’s modulus, Poisson’s ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.  相似文献   

10.
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.  相似文献   

11.
12.
石玉娇  崔丹丹 《激光生物学报》2019,28(4):330-335,342
构建高转化效率的功能纳米探针是推动光声分子成像发展的关键。随着光声分子成像技术的发展,具有非线性增强光声转换效率的自组装纳米探针逐渐成为研究热点,然而有关其非线性增强的定量研究尚未见报道。本文以纳米金球为例,利用有限元仿真定量探究金属纳米探针自组装诱导的非线性光热及光声效应,揭示自组装纳米探针光声效应增强规律,为构建具备高转换效率的光声自组装纳米探针奠定了理论基础。  相似文献   

13.
腹主动脉旁瘤超声多普勒血流信号的仿真研究,可以为采用超声多普勒技术检测腹主动脉旁瘤的形成、生长过程和估计动脉旁瘤瘤体大小提供指导。先通过有限元数值计算方法得到稳恒流下腹主动脉旁瘤区域内的血液流场分布,然后采用余弦叠加的合成方法仿真出相应的超声多普勒血流信号,最后对仿真信号进行频谱分析,计算其平均频率,并研究它与腹主动脉旁瘤瘤体大小的关系。结果表明:当动脉旁瘤较小时,平均频率的幅度变化较小;当动脉旁瘤较大时,平均频率的幅度变化较大。因此,采用平均频率的幅度变化可以在一定程度上估计动脉旁瘤的瘤体大小。  相似文献   

14.
Abstract

The kinematics of a spinal motion segment is determined by the material properties of the soft-tissue and the morphology. The material properties can vary within subjects and between vertebral levels, leading to a wide possible range of motion of a spinal segment independently on its morphology. The goal of this numerical study was to identify the most influential material parameters concerning the kinematics of a spinal motion segment and their plausible ranges. Then, a method was tested to deduce the material properties automatically, based on a given ROM and morphology. A fully parametric finite element model of the morphology and material properties of a lumbar spinal motion segment was developed. The impact of uncertainty of twelve spinal material parameters, as well as the size of the gap between the articular surfaces of the facet joints was examined. The simulation results were compared to our own in vitro data. The flexibility of a lumbar segment was especially influenced by the properties of the anterior annulus region, the facet gap size and the interspinous ligament. The high degree of uncertainty in the material properties and facet gap size published in the literature can lead to a wide scatter in the motion of a spinal segment, with a range of 6°-17° in the intact condition in flexion/extension, from 5°-22° in lateral bending and from 3°-14° in axial rotation. Statistical analysis of the variability might help to estimate the sensitivity and total uncertainty propagated through biomechanical simulations, affecting the reliability of the predictions.  相似文献   

15.
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.  相似文献   

16.
Pelvic prolapse affects one woman in three of all ages combined and is quite common for more than 60% of patients over 60 years of age. The treatment of this pathological problem is one of the biggest challenges to the gynaecologist today. The rate of surgical intervention failure is quite significant. The recurrence of prolapse could be related to inadequate surgical technique or the pathology or/and biomechanical deficiency of the soft tissues. The modelling and simulation of the behaviour of the pelvic cavity could be a major tool for specific evaluation of pelvic status. A first stage of this model is being developed and reported. The computer-aided design model of the organs of the pelvic floor is created using magnetic resonance image data and the ligament boundary conditions are defined. A multi-organ geometric model is thus created and studied.  相似文献   

17.
The present study was conducted in order to establish a methodology based on the finite element method to simulate the contraction of the pelvic floor (PF) muscles. In the generated finite element model, a downward pressure of 90 cm H2O was applied, while actively contracting the PF muscles with different degrees of muscular activation (10, 50 and 100%). The finite element methodology of the active contraction behaviour proposed in this study is adequate to simulate PF muscle contraction with different degrees of muscular activation. In this case, in particular, for an activation of 100%, the numerical model was able to displace the pubovisceral muscle in a range of values very similar to the displacement found in the magnetic resonance imaging data. In the analysed case study, it would be possible to conclude that an intensity contraction of 50% would be necessary to produce enough stiffness to avoid possible urine loss.  相似文献   

18.
Complete maxillary dentures are one of the most economic and easy ways of treatment for edentulous patients and are still widely used. However, their survival rate is slightly above three years. It is presumed that the failure reasons are not only due to normal fatigue but also emerge from damage based on unavoidable improper usage. Failure types other than long-term fatigue, such as over-deforming, also influence the effective life span of dentures. A hypothesis is presumed, stating that the premature/unexpected failures may be initiated by impact on dentures, which can be related to dropping them on the ground or other effects such as biting crispy food. Thus, the behavior of a complete maxillary denture under impact loading due to drop on a rigid surface was investigated using the finite element method utilizing explicit time integration and a rate-sensitive elastoplastic material model of polymethylmethacrylate (PMMA). Local permanent deformations have been observed along with an emphasis on frenulum region of the denture, regardless of the point of impact. Contact stresses at the tooth–denture base were also investigated. The spread of energy within the structure via wave propagation is seen to play a critical role in this fact. Stress-wave propagation is also seen to be an important factor that decreases the denture's fatigue life.  相似文献   

19.
In this paper, we present a distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method. The dynamic model comprises system of three coupled reaction-diffusion models, involving the tumor cells, the normal tissues and the drug concentration. An optimal control problem is formulated with the goal of minimizing the tumor cell density and reducing the side effects of the drug. A distributed parameters method based on the application of variational calculus is used on an integral-Hamiltonian, which is then used to obtain an optimal coupled system of forward state equations and backward co-state equations. The Galerkin finite element method is used to realistically represent the brain structure as well as to facilitate computation. Finally a three-dimensional test case is considered and partitioned into a set of spherical finite elements, using tri-linear basis functions, except for the elements affected by singularities of polar and azimuthal angles, as well as the origin.  相似文献   

20.
Although there are several computational models that explain the trajectory that cells take during migration, till now little attention has been paid to the integration of the cell migration in a multi-signaling system. With that aim, a generalized model of cell migration and cell-cell interaction under multisignal environments is presented herein. In this work we investigate the spatio-temporal cell-cell interaction problem induced by mechano-chemo-thermotactic cues. It is assumed that formation of a new focal adhesion generates traction forces proportional to the stresses transmitted by the cell to the extracellular matrix. The cell velocity and polarization direction are calculated based on the equilibrium of the effective forces associated to cell motility. It is also assumed that, in addition to mechanotaxis signals, chemotactic and thermotactic cues control the direction of the resultant traction force. This model enables predicting the trajectory of migrating cells as well as the spatial and temporal distributions of the net traction force and cell velocity. Results indicate that the tendency of the cells is firstly to reach each other and then migrate towards an imaginary equilibrium plane located near the source of the signal. The position of this plane is sensitive to the gradient slope and the corresponding efficient factors. The cells come into contact and separate several times during migration. Adding other cues to the substrate (such as chemotaxis and/or thermotaxis) delays that primary contact. Moreover, in all states, the average local velocity and the net traction force of the cells decrease while the cells approach the cues source. Our findings are qualitatively consistent with experimental observations reported in the related literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号