首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Multistressor global change, the combined influence of ocean warming, acidification, and deoxygenation, poses a serious threat to marine organisms. Experimental studies imply that organisms with higher levels of activity should be more resilient, but testing this prediction and understanding organism vulnerability at a global scale, over evolutionary timescales, and in natural ecosystems remain challenging. The fossil record, which contains multiple extinctions triggered by multistressor global change, is ideally suited for testing hypotheses at broad geographic, taxonomic, and temporal scales. Here, I assess the importance of activity level for survival of well‐skeletonized benthic marine invertebrates over a 100‐million‐year‐long interval (Permian to Jurassic periods) containing four global change extinctions, including the end‐Permian and end‐Triassic mass extinctions. More active organisms, based on a semiquantitative score incorporating feeding and motility, were significantly more likely to survive during three of the four extinction events (Guadalupian, end‐Permian, and end‐Triassic). In contrast, activity was not an important control on survival during nonextinction intervals. Both the end‐Permian and end‐Triassic mass extinctions also triggered abrupt shifts to increased dominance by more active organisms. Although mean activity gradually returned toward pre‐extinction values, the net result was a permanent ratcheting of ecosystem‐wide activity to higher levels. Selectivity patterns during ancient global change extinctions confirm the hypothesis that higher activity, a proxy for respiratory physiology, is a fundamental control on survival, although the roles of specific physiological traits (such as extracellular pCO2 or aerobic scope) cannot be distinguished. Modern marine ecosystems are dominated by more active organisms, in part because of selectivity ratcheting during these ancient extinctions, so on average may be less vulnerable to global change stressors than ancient counterparts. However, ancient extinctions demonstrate that even active organisms can suffer major extinction when the intensity of environmental disruption is intense.  相似文献   

2.
The Permo‐Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non‐teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo‐Triassic mass extinction. We apply a variety of time‐scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets.  相似文献   

3.
Endosymbionts are organisms that live within the growing skeleton of a live host organism, producing a cavity called a bioclaustration. The endosymbiont lives inside the bioclaustration, which it forms by locally inhibiting the normal skeletal growth of the host, a behaviour given the new ethological category, impedichnia. As trace fossils, bioclaustrations are direct evidence of past symbioses and are first recognized from the Late Ordovician (Caradoc). Bioclaustrations have a wide geographic distribution and occur in various skeletal marine invertebrates, including tabulate and rugose corals, calcareous sponges, bryozoans, brachiopods, and crinoids. Ten bioclaustration ichnogenera are recognized and occur preferentially in particular host taxa, suggesting host-specificity among Palaeozoic endosymbionts. The diversity of bioclaustrations increased during the Silurian and reached a climax by the late Middle Devonian (Givetian). A collapse in bioclaustration diversity and abundance during the Late Devonian is most significant among endosymbionts of host coral and calcareous sponge taxa that were in decline leading up to the Frasnian-Famennian mass extinction.  相似文献   

4.
A Late Ordovician episode of remarkable biotic, climatic, sea level and facies changes, named here as the Middle Caradoc Facies and Faunal Turnover, took place in the Baltoscandian area. This paper presents an integrated overview of these changes in the critical middle Caradoc interval. Data are given on carbonate rock composition, distribution and grain-size composition of the siliciclastic material and the carbon isotopic composition of whole-rock carbonates in cores of Estonia and Sweden.

The Middle Caradoc Facies and Faunal Turnover can be described as a succession of related environmental changes. The turnover began with a positive excursion in carbonate δ13C and continued with sea level changes that led to a sedimentary hiatus on the shelf and a change from carbonate-dominated to siliciclastic-dominated sedimentation in the basin. The turnover ended with an extinction event and associated microfaunal crisis.

The middle Caradoc turnover in Baltoscandia is comparable to a similar succession of changes in North America. The turnover affected two palaeocontinents, and reflects a widespread, possibly global environmental change. Onset of glaciation on Gondwana and/or increased orogenic activity might have initiated the changes in ocean circulation and led to the initial carbon isotope excursion. The following sea level rise and faunal changes affected several different continents.  相似文献   


5.
Aim To evaluate the influence of geographical distribution on the extinction risk of benthic marine invertebrates using data from the fossil record, both during times of background extinction and across a mass‐extinction episode. Total geographical range is contrasted with proxies of global abundance to assess the relationships between the two essential components of geographical distribution and extinction risk. Location A global occurrence data base of fossil benthic macro‐organisms from the Triassic and Jurassic periods was used for this study. Methods Geographical distributions and biodiversity dynamics were assessed for each genus (all taxa) or species (bivalves) based on a sample‐standardized data set and palaeogeographical reconstructions. Geographical ranges were measured by the maximum great circle distance of a taxon within a stratigraphic interval. Global abundance was assessed by the number of localities at which a taxon was recorded. Widespread and rare taxa were separated using median and percentile values of the frequency distributions of occurrences. Results The frequency distribution of geographical ranges is very similar to that for modern taxa. Although no significant correlation could be established between local abundance and geographical range, proxies of global abundance are strongly correlated with geographical range. Taxon longevities are correlated with both mean geographical range and mean global abundance, but range size appears to be more critical than abundance in determining extinction risk. These results are valid when geographical distribution is treated as a trait of taxa and when assessed for individual geological stages. Main conclusions Geographical distribution is a key predictor of extinction risk of Triassic and Jurassic benthic marine invertebrates. An important exception is in the end‐Triassic mass extinction, which equally affected geographically restricted and widespread genera, as well as common and rare genera. This suggests that global diversity crises may curtail the role of geographical distribution in determining extinction risk.  相似文献   

6.
7.
The uncertain blitzkrieg of Pleistocene megafauna   总被引:6,自引:1,他引:5  
We investigated, using meta‐analysis of empirical data and population modelling, plausible scenarios for the cause of late Pleistocene global mammal extinctions. We also considered the rate at which these extinctions may have occurred, providing a test of the so‐called ‘blitzkrieg’ hypothesis, which postulates a rapid, anthropogenically driven, extinction event. The empirical foundation for this work was a comprehensive data base of estimated body masses of mammals, comprising 198 extinct and 433 surviving species > 5 kg, which we compiled through an extensive literature search. We used mechanistic population modelling to simulate the role of human hunting efficiency, meat off‐take, relative naivety of prey to invading humans, variation in reproductive fitness of prey and deterioration of habitat quality (due to either anthropogenic landscape burning or climate change), and explored the capacity of different modelling scenarios to recover the observed empirical relationship between body mass and extinction proneness. For the best‐fitting scenarios, we calculated the rate at which the extinction event would have occurred. All of the modelling was based on sampling randomly from a plausible range of parameters (and their interactions), which affect human and animal population demographics. Our analyses of the empirical data base revealed that the relationship between body mass and extinction risk relationship increases continuously from small‐ to large‐sized animals, with no clear ‘megafaunal’ threshold. A logistic ancova model incorporating body mass and geography (continent) explains 92% of the variation in the observed extinctions. Population modelling demonstrates that there were many plausible mechanistic scenarios capable of reproducing the empirical body mass–extinction risk relationship, such as specific targeting of large animals by humans, or various combinations of habitat change and opportunistic hunting. Yet, given the current imperfect knowledge base, it is equally impossible to use modelling to isolate definitively any single scenario to explain the observed extinctions. However, one universal prediction, which applied in all scenarios in which the empirical distribution was correctly predicted, was for the extinctions to be rapid following human arrival and for surviving fauna to be suppressed below their pre‐‘blitzkrieg’ densities. In sum, human colonization in the late Pleistocene almost certainly triggered a ‘blitzkrieg’ of the ‘megafauna’, but the operational details remain elusive.  相似文献   

8.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

9.
Carbon isotope changes during most of Late Ordovician time (from the mid-Caradoc Kinnekulle K-bentonite until the beginning of the Silurian) were investigated. As the corresponding sequence of rocks is stratigraphically nearly complete in Estonia, an attempt was made to use it to elaborate the general pattern of carbon isotope changes in the Late Ordovician. Complications were caused by several local or regional hiatuses in the middle and late Caradoc and Hirnantian. A total of 385 whole rock samples were studied from eight drill cores in northern and central Estonia. The following positive carbon isotope events were observed: (1) the mid-Caradoc excursion (peak δ13C value 2.2‰) in the uppermost part of the Keila Stage, also known in Sweden; (2) the first late Caradoc excursion (1.9‰) in the lower part of the Rakvere Stage; (3) the second late Caradoc excursion (2.4‰) in the upper part of the Nabala Stage; (4) the early Ashgill excursion (2.5‰) in the lowermost part of the Pirgu Stage; (5) the widely known large Hirnantian excursion (in Estonia the peak value reaches 6.7‰) in the Porkuni Stage. The study interval comprises a long (10 Ma) period characterized by low-magnitude carbon isotope changes and a following brief (2 Ma) interval with large changes. No obvious lithological preference for hosting the positive shifts was recorded. In principle, the δ13C values exceeding the background values may occur in all types of rocks present in a sedimentary basin. Several δ13C positive excursions (values 1.5‰ to 3‰) in the Mohawkian of North America are evidence that the minor Caradoc and early Ashgill δ13C positive shifts in Baltoscandia may have counterparts in Laurentia. If correctly correlated, these shifts may have global significance. The Hirnantian excursion is usually linked to a major glacial event, even if some carbon cycling mechanisms are not completely understood. The environmental causes suggested for the earlier minor shifts range from global climatic and glacial events to very local changes in basin regime and sea level. Our study supports the primary role of climatic or climatically triggered oceanic processes.  相似文献   

10.
Actinopterygians (ray‐finned fishes) successfully passed through four of the big five mass extinction events of the Phanerozoic, but the effects of these crises on the group are poorly understood. Many researchers have assumed that the Permo‐Triassic mass extinction (PTME) and end‐Triassic extinction (ETE) had little impact on actinopterygians, despite devastating many other groups. Here, two morphometric techniques, geometric (body shape) and functional (jaw morphology), are used to assess the effects of these two extinction events on the group. The PTME elicits no significant shifts in functional disparity while body shape disparity increases. An expansion of body shape and functional disparity coincides with the neopterygian radiation and evolution of novel feeding adaptations in the Middle‐Late Triassic. Through the ETE, small decreases are seen in shape and functional disparity, but are unlikely to represent major changes brought about by the extinction event. In the Early Jurassic, further expansions into novel areas of ecospace indicative of durophagy occur, potentially linked to losses in the ETE. As no evidence is found for major perturbations in actinopterygian evolution through either extinction event, the group appears to have been immune to two major environmental crises that were disastrous to most other organisms.  相似文献   

11.
Mass extinctions have profoundly influenced the history of life, not only through the death of species but also through changes in ecosystem function and structure. Importantly, these events allow us the opportunity to study ecological dynamics under levels of environmental stress for which there are no recent analogues. Here, we examine the impact and selectivity of the Late Triassic mass extinction event on the functional diversity and functional composition of the global marine ecosystem, and test whether post‐extinction communities in the Early Jurassic represent a regime shift away from pre‐extinction communities in the Late Triassic. Our analyses show that, despite severe taxonomic losses, there is no unequivocal loss of global functional diversity associated with the extinction. Even though no functional groups were lost, the extinction event was, however, highly selective against some modes of life, in particular sessile suspension feeders. Although taxa with heavily calcified skeletons suffered higher extinction than other taxa, lightly calcified taxa also appear to have been selected against. The extinction appears to have invigorated the already ongoing faunal turnover associated with the Mesozoic Marine Revolution. The ecological effects of the Late Triassic mass extinction were preferentially felt in the tropical latitudes, especially amongst reefs, and it took until the Middle Jurassic for reef ecosystems to fully recover to pre‐extinction levels.  相似文献   

12.
Sea level highstand is generally considered to promote high species diversities among marine organisms through habitat expansion and global climatic amelioration, and marine regression to trigger elevated extinction rates among marine benthic organisms by habitat reduction (the species‐area effect), and among both marine and terrestrial organisms by global climatic deterioration. The Devonian is unusual in that the Late Devonian mass extinction occurs during an interval of global sea level highstand. To further explore this anomaly, the potential relationship between relative sea level and evolutionary biology is analyzed here for the Brachiopoda of the Devonian Period. Successive linear modeling reveals a total lack of correlation between relative sea level and either origination rates, extinction rates, or standing diversity among the Devonian brachiopods.  相似文献   

13.
Reduction in body size of organisms following mass extinctions is well‐known and often ascribed to the Lilliput effect. This phenomenon is expressed as a temporary body size reduction within surviving species. Despite its wide usage the term is often loosely applied to any small post‐extinction taxa. Here we assess the size of bivalves of the family Limidae (Rafineque) prior to, and in the aftermath of, the end‐Triassic mass extinction event. Of the species studied only one occurs prior to the extinction event, though is too scarce to test for the Lilliput effect. Instead, newly evolved species originate at small body sizes and undergo a within‐species size increase, most dramatically demonstrated by Plagiostoma giganteum (Sowerby) which, over two million years, increases in size by 179%. This trend is seen in both field and museum collections. We term this within‐species size increase of newly originated species in the aftermath of mass extinction, the Brobdingnag effect, after the giants that were contemporary with the Lilliputians in Swift's Gulliver's Travels. The size increase results from greater longevity and faster growth rates. The cause of the effect is unclear, although it probably relates to improved environmental conditions. Oxygen‐poor conditions in the Early Jurassic are associated with populations of smaller body size caused by elevated juvenile mortality but these are local/regional effects that do not alter the long‐term, size increase. Although temperature‐size relationships exist for many organisms (Temperature‐Size Rule and Bergmann's Rule), the importance of this is unclear here because of a poorly known Early Jurassic temperature record.  相似文献   

14.
描述上扬子区鄂西和湘西中及晚奥陶世桨肋虫类三叶虫Hexacopyge的 5个种 ,包括 2新种 ,即H .turbiniformis和H .yichangensis;讨论Hexacopyge的定义及其与相关属的关系。Hexacopyge在区内分布广、演化快 。  相似文献   

15.
Fluctuations in body size of orthoconic cephalopods are reported from late Silurian to Late Devonian sediments at several locations in the Tafilalt and in the Dra‐Valley (Anti‐Atlas, Morocco). The combination of measurements of diameters and apical angles allows the reconstruction of their total conch size (length and volume), which revealed a strongly right‐skewed size distribution with an average length of 278 mm, while the largest Devonian actinocerids exceeded 2 m. Within the examined groups (Actinocerida, Orthocerida, Pseudorthocerida), there is no uniform trend, but rather frequent fluctuations with maximum sizes in the late Lochkovian and early Emsian. Body size decreased in times of extinction events, while stable periods are mostly associated with a size increase. Additionally, conch size correlates well with gamma diversity and global δ13C values. Furthermore, the apical angle and septal diameter of orthocones appear to correlate, but only when their mean values are compared across beds.  相似文献   

16.
Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.  相似文献   

17.
Abstract There has been debate over the cause of the extinction of ‘megafauna’ species during the late Pleistocene of Australia. One view is that environmental change, either natural or human‐induced, was the main factor in the extinctions. Some support for this comes from the observation that, among herbivores, most of the species that went extinct were apparently browsers rather than grazers. Browsers would presumably have been more dependent on shrubland and woodland habitats than grazers, and it has been argued that such habitats might have contracted in response to aridity or changed fire regimes in the late Pleistocene. Here, we test this idea by comparing extinction rates of browsers and grazers in the late Pleistocene, controlling for body mass in both groups. We show that in both browsers and grazers the probability of extinction was very strongly related to body mass, and the body mass at which extinction became likely was similar in the two groups. It is true that more browsers than grazers went extinct, but this is largely because most very large herbivores in the late Pleistocene were browsers, not because large browsers were more likely to go extinct than similarly sized grazers. This result provides evidence against some forms of environmental change as a cause of the extinctions.  相似文献   

18.
This study documents previously unknown taxonomic and morphological diversity among early Palaeozoic crinoids. Based on highly complete, well preserved crown material, we describe two new genera from the Ordovician and Silurian of the Baltic region (Estonia) that provide insight into two major features of the geological history of crinoids: the early evolution of the flexible clade during the Great Ordovician Biodiversification Event (GOBE), and their diversification history surrounding the end‐Ordovician mass extinction. The unexpected occurrence of a highly derived sagenocrinid, Tintinnabulicrinus estoniensis gen. et. sp. nov., from Upper Ordovician (lower Katian) rocks of the Baltic palaeocontinent provides high‐resolution temporal, taxonomic and palaeobiogeographical constraints on the origin and early evolution of the Flexibilia. The Silurian (lower Rhuddanian, Llandovery) Paerticrinus arvosus gen. et sp. nov. is the oldest known Silurian crinoid from Baltica and thus provides the earliest Baltic record of crinoids following the aftermath of the end‐Ordovician mass extinction. A Bayesian ‘fossil tip‐dating’ analysis implementing the fossilized birth–death process and a relaxed morphological clock model suggests that flexibles evolved c. 3 million years prior to their oldest fossil record, potentially involving an ancestor–descendant relationship (via ‘budding’ cladogenesis or anagenesis) with the paraphyletic cladid Cupulocrinus. The sagenocrinid subclade rapidly diverged from ‘taxocrinid’ grade crinoids during the final stages of the GOBE, culminating in maximal diversity among Ordovician crinoid faunas on a global scale. Remarkably, diversification patterns indicate little taxonomic turnover among flexibles across the Late Ordovician mass extinction. However, the elimination of closely related clades may have helped pave the way for their subsequent Silurian diversification and increased ecological role in post‐Ordovician Palaeozoic marine communities. This study highlights the significance of studies reporting faunas from undersampled palaeogeographical regions for clade‐based phylogenetic studies and improving estimates of global biodiversity through geological time.  相似文献   

19.
Animal richness, community composition, and phylogenetic community structure (PCS) vary across the modern landscape. Animal communities vary from phylogenetically clustered (i.e. higher relatedness amongst co‐occurring species than is expected by chance) to phylogenetically even (i.e. co‐occurring taxa are more distantly related than expected by chance), which is explained by abiotic or climatic filtering and competitive exclusion, respectively. Under this model, the contribution of historical origination and extinction events to modern animal PCS remains relatively unknown. Because origination and extinction determine the make‐up of the terrestrial community, the study of historical changes in animal PCS is tantamount to understanding formation of modern communities. In the present study, we test the effects of macroevolution and climate changes on ‘hoofed mammals’ (i.e. perissodactyl and artiodactyl) PCS from the late Cenozoic of North America because they experience large, phylogenetically dispersed extinctions of browsing species and phylogenetically dispersed originations of grazing species associated with the evolution of grassland ecosystems during the late Miocene. We show that the loss of numerically dominant nonhypsodont (putatively browsing and mixed feeding) clades and phylogenetically dispersed origination of less speciose clades following the mid Miocene climatic optimum led to an increase in phylogenetic evenness at the regional scale that is well explained by global climate changes. Phylogenetic evenness and a reduced richness during the late Cenozoic may have facilitated reduced niche overlap among co‐occurring hoofed mammal species as global climates cooled. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 485–494.  相似文献   

20.
黄冰 《古生物学报》2011,(3):304-320
灭绝事件对古生物地理格局的影响已引起关注,近期研究表明奥陶纪末大灭绝事件后多样性显著高于传统认识,而全球该时期腕足动物的古生物地理分布情况尚未见报道。本文基于已发表的和最新的资料及所掌握新数据的整理,建立全球腕足动物志留纪初鲁丹(Rhuddanian)早期(残存期)13个产地72属137个出现信息(occurrence...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号