首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wettability of the articular surface of cartilage depends on the condition of its surface active phospholipid overlay, which is structured as multi-bilayer. Based on a hypothesis that the surface of cartilage facilitates the almost frictionless lubrication of the joint, we examined the characteristics of this membrane surface entity in both its normal and degenerated conditions using a combination of atomic force microscopy, contact angle measurement, and friction test methods. The observations have led to the conclusions that (1) the acid–base equilibrium condition influences the lubrication effectiveness of the surface of cartilage and (2) the friction coefficient is significantly dependent on the hydrophobicity of the surface of the tissue, thereby confirming the hypothesis tested in this paper. Both wettability angle and interfacial energy were obtained for varying conditions of the cartilage surface both in its wet, dry and lipid-depleted conditions. The interfacial energy also increased with mole fraction of the lipid species reaching an asymptotic value after 0.6. Also, the friction coefficient was found to decrease to an asymptotic level as the wettability angle increased. The result reveal that the interfacial energy increased with pH till pH = 4.0, and then decreased from pH = 4.0 to reach equilibrium at pH = 7.0.  相似文献   

2.
Orthodontists, like others (Engel, P.A. (1976) Impact Wear of Materials. Elsevier Scientific, New York.), often equate the smoothness of surfaces with the absence of friction. To investigate whether the surface roughness of opposing materials influence the coefficients of friction and ultimately the movement of teeth, arch wires were slid between contact flats to simulate orthodontic arch wire-bracket appliances. From laser specular reflectance measurements, the RMS surface roughness of these arch wires varied from 0.04 microns for stainless steel to 0.23 microns for nickel titanium. Using the same technique, the roughnesses of the contact flats varied from 0.03 microns for the 1 micron lapped stainless steel, to 0.26 microns for the as-received alumina. After each of the arch wire-contact flat couples was placed in a friction tester, fifteen normal forces were systemically applied at 34 degrees C. From plots of the static and kinetic frictional forces vs the normal forces, dry coefficients of friction was obtained that were greater than those reported in the dental literature. The all-stainless steel couples had lower kinetic coefficients (0.120-0.148) than the stainless steel-polycrystalline alumina couple (0.187). When pressed against the various flats, the beta-titanium arch wire (RMS = 0.14 microns) had the highest coefficients of friction (0.445-0.658), although the nickel titanium arch wire was the roughest (RMS = 0.23 microns). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) verified that mass transfer of the beta-titanium arch wire occurred by adhesion onto the stainless steel flats or by abrasion from the sharply faceted polycrystalline alumina flats.  相似文献   

3.
Nucleus replacement was deemed to have therapeutic potential for patients with intervertebral disc herniation. However, whether a patient would benefit from nucleus replacement is technically unclear. This study aimed to investigate the influence of nucleus pulposus (NP) removal on the biomechanical behavior of a lumbar motion segment and to further explore a computational method of biomechanical characteristics of NP removal, which can evaluate the mechanical stability of pulposus replacement. We, respectively, reconstructed three types of models for a mildly herniated disc and three types of models for a severely herniated disc based on a L4–L5 segment finite element model with computed tomography image data from a healthy adult. First, the NP was removed from the herniated disc models, and the biomechanical behavior of NP removal was simulated. Second, the NP cavities were filled with an experimental material (Poisson's ratio = 0.3; elastic modulus = 3 MPa), and the biomechanical behavior of pulposus replacement was simulated. The simulations were carried out under the five loadings of axial compression, flexion, lateral bending, extension, and axial rotation. The changes of the four biomechanical characteristics, i.e. the rotation degree, the maximum stress in the annulus fibrosus (AF), joint facet contact forces, and the maximum disc deformation, were computed for all models. Experimental results showed that the rotation range, the maximum AF stress, and joint facet contact forces increased, and the maximum disc deformation decreased after NP removal, while they changed in the opposite way after the nucleus cavities were filled with the experimental material.  相似文献   

4.
Multi-mode scanning probe microscopy is employed to investigate the nanostructure of dermal samples from three types of snakes. Sophisticated friction modifying nanostructures are described. These include an ordered microfibrillar array that can function to achieve mission adaptable friction characteristics. Significant reduction of adhesive forces in the contact areas caused by the 'double-ridge' nanoscale microfibrillar geometry provides ideal conditions for sliding in forward direction with minimum adhesive forces and friction. Low surface adhesion in these local contact points may reduce local wear and skin contamination by environmental debris. The highly asymmetric, 'pawl-like' profile of the microfibrillar ends with radius of curvature 20-40 nm induces friction anisotropy in forward backward motions and serves as an effective stopper for backward motion preserving low friction for forward motion. The system of continuous micropores penetrating through the snake skin may serve as a delivery system for lubrication/anti-adhesive lipid mixture that provides for boundary lubrication of snake skins.  相似文献   

5.
Friction and adhesion forces of the ventral surface of tarsi and metatarsi were measured in the bird spider Aphonopelma seemanni (Theraphosidae) and the hunting spider Cupiennius salei (Ctenidae). Adhesion measurements revealed no detectable attractive forces when the ventral surfaces of the leg segments were loaded and unloaded against the flat smooth glass surface. Strong friction anisotropy was observed: friction was considerably higher during sliding in the distal direction. Such anisotropy is explained by an anisotropic arrangement of microtrichia on setae: only the setal surface facing in the distal direction of the leg is covered by the microtrichia with spatula-like tips. When the leg is pushed, the spatula-shaped tips of microtrichia contact the substrate, whereas, when the leg is pulled over a surface, setae bend in the opposite direction and contact the substrate with their spatulae-lacking sides. In an additional series of experiments, it was shown that desiccation has an effect on the friction force. Presumably, drying of the legs results in reduction of the flexibility of the setae, microtrichia, spatulae, and underlying cuticle; this diminishes the ability to establish proper contact with the substrate and thus reduces the contact forces.  相似文献   

6.
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal “heel” pads (euplantulae) and a pre-tarsal “toe” pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects'' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised “friction pads” that produce traction when pressed against the substrate, while arolia are “true” adhesive pads that stick to the substrate when activated by pulling forces.  相似文献   

7.
In this paper, we design and simulate a two-dimensional photonic crystal MZI for pressure sensing with a high sensitivity. The sensor is formed by silicon rods of a rectangular lattice distributed in air wafer; when the pressure is applied in an area of rods situated between the Y branch waveguides of MZI, the sensitivity achieved a very high value which is 22.3667 nm/GPa compared to that obtained when the pressure was applied over the entire surface of the sensor structure in which the sensitivity reached 6.36 nm/GPa.  相似文献   

8.
In a previous work we observed multilayered plate-like structures surrounding partially denatured HeLa chromosomes at metaphase ionic conditions. This unexpected finding has led us to carry out an extensive investigation of these structures. Our results show that plates can also be found in metaphase chromosomes from chicken lymphocytes. We have used atomic force microscopy (AFM) to image and investigate the mechanical properties of plates in aqueous solution. Plates are thin (~6.5 nm each layer) but compact and resistant to penetration by the AFM tip: their Young’s modulus is ~0.2 GPa and the stress required for surface penetration is ~0.03 GPa in the presence of Mg2+ (5–20 mM). Low-ionic strength conditions produce emanation of chromatin fibers from the edges of uncrosslinked plates. These observations and AFM results obtained applying high forces indicate that the chromatin filament is tightly tethered inside the plates. Images of metal-shadowed plates and cryo-electron microscopy images of frozen-hydrated plates suggest that nucleosomes are tilted with respect to the plate surface to allow an interdigitation between the successive layers and a thickness reduction compatible with the observed plate height. The similarities between denatured plates from chicken chromosomes and aggregates of purified chromatin from chicken erythrocytes suggest that chromatin has intrinsic structural properties leading to plate formation. Scanning electron micrographs and images obtained with the 200-kV transmission microscope show that plates are the dominant component of compact chromatids. We propose that metaphase chromosomes are formed by many stacked plates perpendicular to the chromatid axis.  相似文献   

9.
The objectives of this project were to use finite element methods to determine how changes in the elastic modulus due to oral cancer therapeutic radiation alter the distribution of mechanical stresses in teeth and to determine if observed failures in irradiated teeth correlate with changes in mechanical stresses. A thin slice section finite element (FE) model was constructed from micro CT sections of a molar tooth using MIMICS and 3-Matic software. This model divides the tooth into three enamel regions, the dentin-enamel junction (DEJ) and dentin. The enamel elastic modulus was determined in each region using nano indentation for three experimental groups namely – control (non-radiated), in vitro irradiated (simulated radiotherapy following tooth extraction) and in vivo irradiated (extracted subsequent to oral cancer patient radiotherapy) teeth. Physiological loads were applied to the tooth models at the buccal and lingual cusp regions for all three groups (control, in vitro and in vivo). The principal tensile stress and the maximum shear stress were used to compare the results from different groups since it has been observed in previous studies that delamination of enamel from the underlying dentin was one of the major reasons for the failure of teeth following therapeutic radiation. From the FE data, we observed an increase in the principal tensile stress within the inner enamel region of in vivo irradiated teeth (9.97 ± 1.32 MPa) as compared to control/non-irradiated teeth (8.44 ± 1.57 MPa). Our model predicts that failure occurs at the inner enamel/DEJ interface due to extremely high tensile and maximum shear stresses in in vivo irradiated teeth which could be a cause of enamel delamination due to radiotherapy.  相似文献   

10.
The nanoscale milling and scratching processes of copper workpieces are studied using molecular dynamics simulations based on the tight-binding and Morse potentials. The effects of the rotation velocity of the tool and the workpiece temperature are evaluated in terms of atomic trajectories, slip vectors, flow field of chips, cutting forces and groove characteristics. The simulation shows that a slip system in the ?110? direction on the workpiece surface occurs for milling with a tool rotation velocity of ω = 0°/fs. However, no apparent slip system appears for ω = 0.005°/fs or higher; instead, the number of amorphous areas increases. At ω = 0°/fs (nanoscratching), most of the removed atoms pile up in front of the tool and some gradually backfill when the tool rotates due to the effects of rotational friction and adhesion between the tool and the removed atoms. The largest number of removed atoms that piled up in front of the tool were obtained for milling with ω = 0°/fs; the number of removed atoms that piled up in front of the tool decreased with the increasing ω value. The component forces corresponding to the feed direction of the tool are the largest for the nanodrilling and nanomilling processes. High-precision grooves can be obtained at a low workpiece temperature (e.g. room temperature) with ω = 0°/fs.  相似文献   

11.
Human salivary statherin was purified from parotid saliva and adsorbed to bare hydrophilic (HP) mica and STAI-coated hydrophobic (HB) mica in a series of Surface Force Balance experiments that measured the normal (F n) and friction forces (F s*) between statherin-coated mica substrata. Readings were taken both in the presence of statherin solution (HP and HB mica) and after rinsing (HP mica). F n measurements showed, for both substrata, monotonic steric repulsion that set on at a surface separation D ~ 20 nm, indicating an adsorbed layer whose unperturbed thickness was ca 10 nm. An additional longer-ranged repulsion, probably of electrostatic double-layer origin, was observed for rinsed surfaces under pure water. Under applied pressures of ~ 1 MPa, each surface layer was compressed to a thickness of ca 2 nm on both types of substratum, comparable with earlier estimates of the size of the statherin molecule. Friction measurements, in contrast with F n observations, were markedly different on the two different substrata: friction coefficients, μ ≡ ?F s*/?F n, on the HB substratum (μ ≈ 0.88) were almost an order of magnitude higher than on the HP substratum (μ ≈ 0.09 and 0.12 for unrinsed and rinsed, respectively), and on the HB mica there was a lower dependence of friction on sliding speed than on the HP mica. The observations were attributed to statherin adsorbing to the mica in multimer aggregates, with internal re-arrangement of the protein molecules within the aggregate dependent on the substratum to which the aggregate adsorbed. This internal re-arrangement permitted aggregates to be of similar size on HP and HB mica but to have different internal molecular orientations, thus exposing different moieties to the solution in each case and accounting for the very different friction behaviour.  相似文献   

12.
A new approach to estimate normal and tangential contact parameters in the foot-ground contact during human gait was proposed. A correct estimation of the contact parameters would be very important in the resolution of predictive forward dynamic problems. The normal contact forces have been well estimated in the literature. But accurate estimation of tangential forces has not been reached yet. This work proposed a new procedure to accurately estimate friction forces. The approach has been based on the consideration of the modulus of the tangential force instead of its components. This modulus was introduced together with the modulus of the normal contact force and its two associated moments in an optimization algorithm to fit the contact forces provided by the model to the experimental data obtained with a force plate. An inverse dynamics problem was solved as a step previous to the optimization algorithm. The results showed that both the normal and tangential forces and the moments in the horizontal plane were in agreement with the experimental measurements. This work also analyzed the influence on the results of the friction law. The results obtained with the general friction law, which considered dry (static and dynamic) and viscous friction, were compared with results provided by simpler laws. The analysis of the components of the friction forces pointed out the importance of the Stribeck component in the resultant force instead of the viscous friction which played a minimal role. But for modelling the stick-slip transition, the implementation of a general friction law is necessary.  相似文献   

13.
Based on Hamid model of 11Å tobermorite, amorphous calcium silicates hydrates (or C-S-H) structures (Ca4Si6O14(OH)4?2H2O as the C-S-H(I) and (CaO)1.67(SiO2)(H2O)1.75 as the C-S-H(II)) with the Ca/Si ratio of 0.67 and 1.7 are concerned. Then, as the representative ‘globule’ C-S-H, two amorphous C-S-H structures with the size of 5.352 × 4.434 × 4.556 nm3 during the stretch process are simulated at a certain strain rate of 10?3 ps?1 by LAMMPS program for molecular dynamics simulation, using ClayFF force field. The tensile stress–strain curves are obtained and analysed. Besides, elastic modulus of the ‘globule’ C-S-H is calculated to assess the elastic modulus of C-S-H phases (the low-density C-S-H – LD C-S-H – and the high-density C-S-H – HD C-S-H), where the porosity is a critical factor for explaining the relationship between ‘globule’ C-S-H at nanoscale and C-S-H phases at microscale. Results show that: (1) The C-S-H(I) structure has transformed from crystalline to amorphous during the annealing process, Young’s moduli in x, y and z directions are almost the same. Besides, the extent of aggregation and aggregation path for water molecules in the structure is different in three directions. (2) Young’s modulus of both amorphous C-S-H(I) and C-S-H(II) structures with a size of about 5 nm under strain rate of 10?3 ps?1 at 300 K in three directions is averaged to be equal, of which C-S-H(II) structure is about 60.95 GPa thus can be seen as the elastic modulus of the ‘globule’ C-S-H. (3) Based on the ‘globule’ C-S-H, the LD C-S-H and HD C-S-H can be assessed by using the Self-Consistent Scheme (separately 18.11 and 31.45 GPa) and using the Mori–Tanaka scheme (29.78 and 37.71 GPa), which are close to the nanoindentation experiments by Constantinides et al. (21.7 and 29.4 GPa).  相似文献   

14.
This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.  相似文献   

15.
Isomers of 1-nitroso-3-nitro-1,2,4-triazol-5-one-2-oxide are of interest in the contest of high explosives and were found to have true local energy minima at the hybrid DFT-B3LYP/aug-cc-pVDZ level. The optimised structures, vibrational frequencies and thermodynamic values for triazol-5-one-N-oxides have been obtained in the ground state. Kamlet–Jacob equations were used to evaluate the performance of model compounds based on the predicted density and the calculated heat of explosion. The detonation properties (D = 10.15–10.46 km/s, P = 50.86–54.25 GPa) of designed compounds were found to be promising compared with 1,3,5-trinitro-1,3,5-triazine (D = 8.75 km/s, P = 34.7 GPa), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (D = 8.96 km/s, P = 35.96 GPa), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (D = 9.20 km/s, P = 42.0 GPa) and octanitrocubane (D = 9.90 km/s, P = 48.45 GPa). The replacement of secondary hydrogen by nitroso group appears to be a particularly promising area for investigation since it may lead to the desirable consequences of higher heat of explosion, higher density and thus detonation performance.  相似文献   

16.
Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties.  相似文献   

17.
Developmental dental pathologies provide insight into health of primates during ontogeny, and are particularly useful for elucidating the environment in which extant and extinct primates matured. Our aim is to evaluate whether the prevalence of an unusual dental defect on the mesiolabial enamel of the upper lateral incisor, thought to reflect dental crowding during maturation, is lesser in female orangutans, with their smaller teeth, than in males; and in Sumatran orangutans, from more optimal developmental habitats, than in those from Borneo. Our sample includes 49 Pongo pygmaeus (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth), and Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography, and dental metrics of anterior teeth. We observed fenestration between incisor crypts and marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with or without the defect, implicating undergrowth of the jaw as the proximate cause of dental crowding and defect presence. Male orangutans from both islands show more defects than do females. The defect is significantly more common in Bornean orangutans (71 %) compared to Sumatran (29 %). Prevalence among fossil forms falls between these extremes, except that all five individual Anapithecus show one or both incisors with the defect. We conclude that maxillary lateral incisor defect is a common developmental pathology of apes that is minimized in optimal habitats and that such evidence can be used to infer habitat quality in extant and fossil apes.  相似文献   

18.
This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major ankle muscles were simulated and corresponded well with the trend of their EMG signals. These forces were applied to the finite element model to obtain stress distributions for patients with triple arthrodesis and normal subjects in three stages of the gait cycle, i.e. heel strike, midstance, and heel rise. The results demonstrated that the stress distribution patterns of the tibio-talar joint in patients with triple arthrodesis differ from those of normal subjects in investigated gait cycle stages. The mean and standard deviations for maximum stresses in the tibo-talar joint in the stance phase for patients and normal subjects were 9.398e7 ± 1.75e7 and 7.372e7 ± 4.43e6 Pa, respectively. The maximum von Mises stresses of the tibio-talar joint for all subjects in the stance phase found to be on the lateral side of the inferior surface of the joint. The results also indicate that, in patients with triple arthrodesis, increasing gastrocnemius–soleus muscle force reduces the stress on the medial malleolus compared with normal subjects. Most of stresses in this area are between 45 and 109 kPa, and will decrease to almost 32 kPa in patients after increasing of 40% in gastrocnemius–soleus muscle force.  相似文献   

19.
The forces and friction between cellulose spheres have been measured in the absence and presence of xyloglucan using an atomic force microscope. The forces between cellulose are monotonically repulsive with negligible adhesion after contact is achieved. The friction coefficient is observed to be unusually high in comparison with other nanotribological systems. We have confirmed that xyloglucan adsorbs strongly to cellulose, which results in a much stronger adhesion, which is dependent on the time the surfaces are in contact. Xyloglucan also increases the repulsion on approach of the cellulose surfaces, and the friction is markedly reduced. The apparently incompatible observations of decreased friction in combination with increased adhesion fulfills many of the necessary criteria for a papermaking additive.  相似文献   

20.
Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号