首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Automated segmentation and morphometry of fluorescently labeled cell nuclei in batches of 3D confocal stacks is essential for quantitative studies. Model-based segmentation algorithms are attractive due to their robustness. Previous methods incorporated a single nuclear model. This is a limitation for tissues containing multiple cell types with different nuclear features. Improved segmentation for such tissues requires algorithms that permit multiple models to be used simultaneously. This requires a tight integration of classification and segmentation algorithms. Two or more nuclear models are constructed semiautomatically from user-provided training examples. Starting with an initial over-segmentation produced by a gradient-weighted watershed algorithm, a hierarchical fragment merging tree rooted at each object is built. Linear discriminant analysis is used to classify each candidate using multiple object models. On the basis of the selected class, a Bayesian score is computed. Fragment merging decisions are made by comparing the score with that of other candidates, and the scores of constituent fragments of each candidate. The overall segmentation accuracy was 93.7% and classification accuracy was 93.5%, respectively, on a diverse collection of images drawn from five different regions of the rat brain. The multi-model method was found to achieve high accuracy on nuclear segmentation and classification by correctly resolving ambiguities in clustered regions containing heterogeneous cell populations.  相似文献   

2.
《IRBM》2014,35(1):27-32
Automatic anatomical brain image segmentation is still a challenge. In particular, algorithms have to address the partial volume effect (PVE) as well as the variability of the gray level of internal brain structures which may appear closer to gray matter (GM) than white matter (WM). Atlas based segmentation is one solution as it brings prior information. For such tasks, probabilistic atlases are very useful as they take account of the PVE information. In this paper, we provide a detailed analysis of a generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. The inputs are gray level data whereas our atlas is composed of both an estimation of the deformation metric and probability maps of each tissue (called class). This atlas is used to guide the tissue segmentation of new images. Experiments are shown on brain T1 MRI datasets. This method only requires approximate pre-registration, as the latter is done jointly with the segmentation. Note however that an approximate registration is a reasonable pre-requisite given the application.  相似文献   

3.
Understanding the postural effects on organs and skeleton could be crucial for several applications. This paper reports on a methodology to quantify the three-dimensional effects of postures on deformable anatomical structures. A positional MRI scanner was used to image the full trunk in four postures: supine, standing, seated and forward-flexed. The MRI stacks were processed with a custom toolbox, implemented using open source software. The semi-automated segmentation was based on the deformation of generic models of the pelvis, sternum, femoral heads, spine, liver, kidneys, spleen, skin, thoracic and abdominal cavities. The toolbox was designed to be easily extended by additional image filters, deformation schemes, or new generic models. Results obtained on one subject demonstrate that the method can be used to quantify the effects of postures on skeleton and organs. The spinal curvature, the pelvic parameters and the volume of the thoracic cavity were affected by the four postures. The volumes of the kidneys, spleen, liver and abdominal object were mostly unaffected. The movement of organs was coherent with the effect of gravity. The deformation of organs between postures was expressed using geometrical transformations. Investigations should be pursued on a larger population to confirm the patterns observed on the first subject.  相似文献   

4.
Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels’ appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi’s filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.  相似文献   

5.
In this paper we present an application of deformable models for the segmentation of volumetric tissue images. The three-dimensional images are obtained using confocal microscope. The segmented images have been used for the quantitative analysis of the Fluorescence In Situ Hybridization (FISH) signals. An ellipsoidal surface initialized around the cell of interest acts as a deformable model. The deformable model surface voxels are subjected to various internal and external forces derived from underlying image features as well as externally imposed constraints. The deformable model converges to the optimum cell shape when the vector sum of all the forces acting on the model is zero. The result of segmentation is used to confirm the cell membership of the FISH signals and to reject all the signals that lie outside the cell nuclei. Three-dimensional region isolation and labeling technique is used to label and count the FISH signals per cell nucleus. A simple study on the effect of different segmentation methods over a quantitative analysis of FISH signals is also presented.  相似文献   

6.
This study proposes a novel adaptive mesh expansion model (AMEM) for liver segmentation from computed tomography images. The virtual deformable simplex model (DSM) is introduced to represent the mesh, in which the motion of each vertex can be easily manipulated. The balloon, edge, and gradient forces are combined with the binary image to construct the external force of the deformable model, which can rapidly drive the DSM to approach the target liver boundaries. Moreover, tangential and normal forces are combined with the gradient image to control the internal force, such that the DSM degree of smoothness can be precisely controlled. The triangular facet of the DSM is adaptively decomposed into smaller triangular components, which can significantly improve the segmentation accuracy of the irregularly sharp corners of the liver. The proposed method is evaluated on the basis of different criteria applied to 10 clinical data sets. Experiments demonstrate that the proposed AMEM algorithm is effective and robust and thus outperforms six other up-to-date algorithms. Moreover, AMEM can achieve a mean overlap error of 6.8% and a mean volume difference of 2.7%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 1.3 mm and 2.7 mm, respectively.  相似文献   

7.
Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation.  相似文献   

8.
Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed segmentation framework that consists of an integration of several digital image processing algorithms. Twenty microscopic blood images were tested, and the proposed framework managed to obtain 92% accuracy for nucleus segmentation and 78% for cytoplasm segmentation. The results indicate that the proposed framework is able to extract the nucleus and cytoplasm region in a WBC image sample.  相似文献   

9.
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.  相似文献   

10.

During physiological or ‘natural’ childbirth, the fetal head follows a distinct motion pattern—often referred to as the cardinal movements or ‘mechanisms’ of childbirth—due to the biomechanical interaction between the fetus and maternal pelvic anatomy. The research presented in this paper introduces a virtual reality-based simulation of physiological childbirth. The underpinning science is based on two numerical algorithms including the total Lagrangian explicit dynamics method to calculate soft tissue deformation and the partial Dirichlet–Neumann contact method to calculate the mechanical contact interaction between the fetal head and maternal pelvic anatomy. The paper describes the underlying mathematics and algorithms of the solution and their combination into a computer-based implementation. The experimental section covers first a number of validation experiments on simple contact mechanical problems which is followed by the main experiment of running a virtual reality childbirth. Realistic mesh models of the fetus, bony pelvis and pelvic floor muscles were subjected to the intra-uterine expulsion forces which aim to propel the virtual fetus through the virtual birth canal. Following a series of simulations, taking variations in the shape and size of the geometric models into account, we consistently observed the cardinal movements in the simulator just as they happen in physiological childbirth. The results confirm the potential of the simulator as a predictive tool for problematic childbirths subject to patient-specific adaptations.

  相似文献   

11.
Three-dimensional reconstruction of trees and the estimation of biophysical parameters is significant for the management of forest resources, ecological studies carbon cycle and biodiversity. Terrestrial LiDAR data provides detailed, objective and three-dimensional measurement of forest structure and exact metrics of the tree canopies. Several methods for tree detection including canopy height models and raster interpolation models are based on commercial software and huge data processing. The objective of the given study is the three-dimensional reconstruction of trees by implementing segmentation algorithms and thereby estimating the Leaf Area Index of individual tree segments by terrestrial laser scanned data in the Mudumalai forests of Western Ghats, India. The hierarchical minimum cut segmentation method is used for the three-dimensional reconstruction of the individual trees by tracking cylinders along individual branches and trees in a hierarchical order. Super voxel clustering method is also implemented in the study for tree reconstruction and estimating the tree parameters. Leaf area index is calculated by applying a multivariate regression technique for the heights and the diameter obtained from both the segmentation methods. Results obtained indicated a strong correlation with the in-situ measurements which are obtained from the instruments. The approach addresses the applicability of segmentation algorithms which can be run fully automatically. The approach successfully reconstructed a high precision and realistic model of trees in the Western Ghats region which failed in the case of traditional tree modeling methods which requires multiple instruments operating simultaneously for extracting each parameter. The method proved that using TLS; multiple forest parameters can be estimated simultaneously.  相似文献   

12.
Individualized current-flow models are needed for precise targeting of brain structures using transcranial electrical or magnetic stimulation (TES/TMS). The same is true for current-source reconstruction in electroencephalography and magnetoencephalography (EEG/MEG). The first step in generating such models is to obtain an accurate segmentation of individual head anatomy, including not only brain but also cerebrospinal fluid (CSF), skull and soft tissues, with a field of view (FOV) that covers the whole head. Currently available automated segmentation tools only provide results for brain tissues, have a limited FOV, and do not guarantee continuity and smoothness of tissues, which is crucially important for accurate current-flow estimates. Here we present a tool that addresses these needs. It is based on a rigorous Bayesian inference framework that combines image intensity model, anatomical prior (atlas) and morphological constraints using Markov random fields (MRF). The method is evaluated on 20 simulated and 8 real head volumes acquired with magnetic resonance imaging (MRI) at 1 mm3 resolution. We find improved surface smoothness and continuity as compared to the segmentation algorithms currently implemented in Statistical Parametric Mapping (SPM). With this tool, accurate and morphologically correct modeling of the whole-head anatomy for individual subjects may now be feasible on a routine basis. Code and data are fully integrated into SPM software tool and are made publicly available. In addition, a review on the MRI segmentation using atlas and the MRF over the last 20 years is also provided, with the general mathematical framework clearly derived.  相似文献   

13.
It has recently become apparent that high-mannose type N-glycans directly promote protein folding, whereas complex-type ones play a crucial role in the stabilization of protein functional conformations through hydrophobic interactions with the hydrophobic protein surfaces. Here an attempt was made to understand more deeply the molecular basis of these chaperone-like functions with the aid of information obtained from spacefill models of N-glycans. The promotion of protein folding by high-mannose N-glycans seemed to be based on their unique structure, which includes a hydrophobic region similar to the cyclodextrin cavity. The promotive features of high-mannose N-glycans newly observed under various conditions furnished strong support for the view that both intra- and extramolecular high-mannose N-glycans are directly involved in the promotion of protein folding in the endoplasmic reticulum. Further, it was revealed that the N-acetyllactosamine units in complex-type N-glycans have an amphiphilic structure and greatly contribute to the formation of extensive hydrophobic surfaces and, consequently, to the N-glycan-protein hydrophobic interactions. The processing of high-mannose type N-glycans to complex-type ones seems to be an ingenious device to enable the N-glycans to perform these two chaperone-like functions.  相似文献   

14.
In vivo human mitral valves (MV) were imaged using real-time 3D transesophageal echocardiography (rt-3DTEE), and volumetric images of the MV at mid-systole were analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation, a compact representation of shape. The resulting MV models were loaded with physiologic pressures using finite element analysis (FEA). We present the regional leaflet stress distributions predicted in normal and diseased (regurgitant) MVs. Rt-3DTEE, semi-automated leaflet segmentation, 3D deformable modeling, and FEA modeling of the in vivo human MV is tenable and useful for evaluation of MV pathology.  相似文献   

15.
Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is more robust and sensitive to weak spots. More importantly, it can obtain higher segmentation accuracy in the presence of noise, artifacts and weakly expressed spots compared with the other four methods.  相似文献   

16.
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.  相似文献   

17.
Current methods of gene prediction,their strengths and weaknesses   总被引:1,自引:0,他引:1  
While the genomes of many organisms have been sequenced over the last few years, transforming such raw sequence data into knowledge remains a hard task. A great number of prediction programs have been developed that try to address one part of this problem, which consists of locating the genes along a genome. This paper reviews the existing approaches to predicting genes in eukaryotic genomes and underlines their intrinsic advantages and limitations. The main mathematical models and computational algorithms adopted are also briefly described and the resulting software classified according to both the method and the type of evidence used. Finally, the several difficulties and pitfalls encountered by the programs are detailed, showing that improvements are needed and that new directions must be considered.  相似文献   

18.
基于Snake模型的图像分割技术是近年来图像处理领域的研究热点之一。Snake模型承载上层先验知识并融合了图像的底层特征,针对医学图像的特殊性,能有效地应用于医学图像的分割中。本文对各种基于Snake模型的改进算法和进化模型进行了研究,并重点梳理了最新的研究成果,以利于把握基于Snake模型的医学图像分割方法的脉络和发展方向。  相似文献   

19.
We describe a bioinformatics tool that can be used to predict the position of phosphorylation sites in proteins based only on sequence information. The method uses the support vector machine (SVM) statistical learning theory. The statistical models for phosphorylation by various types of kinases are built using a dataset of short (9-amino acid long) sequence fragments. The sequence segments are dissected around post-translationally modified sites of proteins that are on the current release of the Swiss-Prot database, and that were experimentally confirmed to be phosphorylated by any kinase. We represent them as vectors in a multidimensional abstract space of short sequence fragments. The prediction method is as follows. First, a given query protein sequence is dissected into overlapping short segments. All the fragments are then projected into the multidimensional space of sequence fragments via a collection of different representations. Those points are classified with pre-built statistical models (the SVM method with linear, polynomial and radial kernel functions) either as phosphorylated or inactive ones. The resulting list of plausible sites for phosphorylation by various types of kinases in the query protein is returned to the user. The efficiency of the method for each type of phosphorylation is estimated using leave-one-out tests and presented here. The sensitivities of the models can reach over 70%, depending on the type of kinase. The additional information from profile representations of short sequence fragments helps in gaining a higher degree of accuracy in some phosphorylation types. The further development of an automatic phosphorylation site annotation predictor based on our algorithm should yield a significant improvement when using statistical algorithms in order to quantify the results.  相似文献   

20.
A review of the physical principles that are the ground of the stochastic formulation of chemical kinetics is presented along with a survey of the algorithms currently used to simulate it. This review covers the main literature of the last decade and focuses on the mathematical models describing the characteristics and the behavior of systems of chemical reactions at the nano- and micro-scale. Advantages and limitations of the models are also discussed in the light of the more and more frequent use of these models and algorithms in modeling and simulating biochemical and even biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号