首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antiphage properties of many kinds of chemicals such as antibiotics, surface-active agents and chelating agents were examined on Brevibacterium lactofermentum No. 2256—phage P465 system using double-layer agar method, as a part of the basic study, for preventing phage infection in the industrial fermentation.

A great majority of inhibitors which were selected were usually nonspecific and inhibited also bacterial growth. Among about 200 chemicals tested, 5 antibiotics such as chloramphenicol and tetracycline, 6 chelating agents such as phytic acid and 19 surface- active agents such as PEG monoester and POE alkyl ether showed the selective inhibitions for phage infection at the concentrations which did not affect bacterial growth, or at the subbactericidal concentrations that suppressed bacterial growth slightly.

Of the above chemicals which showed selective inhibitions for phage infection, a possible mechanism of chelating agents chiefly of phytic acid was investigated. When 0.1 to 0.2% of phytic acid was present in the medium, the effect of inhibition was most remarkable; this could be applied to the actual phage-infected l-glutamic acid fermentation. Phytic acid had no direct phagocidal action, nor did it inhibit the late step of the phage multiplication; but it prevented the adsorption of phages, which required inorganic cofactors such as Mg2+ or Ca2+ in this step, to the host bacteria. Moreover, a part of the infected bacteria was made incapable of forming plaques in the presence of phytic acid. These results suggested that the chelation between Mg2+ or Ca2+ and phytic acid would remove the metal ions essential for phage adsorption and prevent the phage adsorption and infection of phage DNA, consequently, the phage infection.

The effect of the non-ionic surface-active agents (SAA) on the infection of phage P465 of Br. lactofermentum was examined by adsorption and one-step growth experiments as a part of the basic study on the prevention of phage-infection in the industrial fermentation. Among various SAA tested, polyoxyethylene stearyl ether (POE-SE), polyethylene glycol monooleate (PEG-MO) and polyoxyethylene sorbitan monostearate (Tween 60) had remarkably demonstrated the selective inhibition of phage infection.

The effect of the above three SAA was apparently restricted to the initial adsorption step of phage infection, for the phage already adsorbed would not be affected by exposure to SAA. However, the results of one-step growth experiment indicated that Tween 60 inhibited not only the phage-adsorption, but also the maturation of phage already adsorbed in the host cells. The rate of the inhibition was found to be directly related to the concentration of agent. And, the most effective adsorption-inhibition was exhibited at the critical micelle concentration of SAA. The concentration as used in our experiments did not affect the viability of either phages or the host cells.

The results also indicated that the inhibition of phage-adsorption was due to the action of SAA on the surface of the bacterial cells rather than on the phage. This is supported by the observation that preincubation of phage with SAA did not affect either the subsequent adsorption rate or the plaque-forming ability of the phage. In contrast with above, a short-term exposure of bacterial cells to SAA caused an apparent change to the cell surface which was only partially restored by washing repeatedly. Moreover, the inhibitory effect of SAA on phage-adsorption appears quite specific in the phage-host system.  相似文献   

2.
Infection ofEscherichia coli with T1, T2r+, T3 and T4 phages leads to an immediate inhibition of β-galactosidase synthesis. Similar results were obtained with the virulent mutant of phage lambda. The degree of inhibition of β-galactosidase synthesis depends on the time delay between the addition of the inducer and the phage particles, and on the amount of phage DNA, which has penetrated into the host cell. RNA phage MS2 exhibited no inhibitory effect on enzyme synthesis.  相似文献   

3.
Filamentous phages have distinguished roles in conferring many pathogenicity and survival related features to Gram-negative bacteria including the medically important Vibrio cholerae, which carries factors such as cholera toxin on phages. A novel filamentous phage, designated VFJΦ, was isolated in this study from an ampicillin and kanamycin-resistant O139 serogroup V. cholerae strain ICDC-4470. The genome of VFJΦ is 8555 nucleotides long, including 12 predicted open reading frames (ORFs), which are organized in a modular structure. VFJΦ was found to be a mosaic of two groups of V. cholerae phages. A large part of the genome is highly similar to that of the fs2 phage, and the remaining 700 bp is homologous to VEJ and VCYΦ. This 700 bp region gave VFJΦ several characteristics that are not found in fs2 and other filamentous phages. In its native host ICDC-4470 and newly-infected strain N16961, VFJΦ was found to exist as a plasmid but did not integrate into the host chromosome. It showed a relatively wide host range but did not infect the classical biotype O1 V. cholerae strains. After infection, the host strains exhibited obvious inhibition of both growth and flagellum formation and had acquired a low level of ampicillin resistance and a high level of kanamycin resistance. The antibiotic resistances were not directly conferred to the hosts by phage-encoded genes and were not related to penicillinase. The discovery of VFJΦ updates our understanding of filamentous phages as well as the evolution and classification of V. cholerae filamentous phage, and the study provides new information on the interaction between phages and their host bacteria.  相似文献   

4.
The mechanism of the initial steps of bacteriophage infection in Lactococcus lactis subsp. lactis C2 was investigated by using phages c2, ml3, kh, l, h, 5, and 13. All seven phages adsorbed to the same sites on the host cell wall that are composed, in part, of rhamnose. This was suggested by rhamnose inhibition of phage adsorption to cells, competition between phage c2 and the other phages for adsorption to cells, and rhamnose inhibition of lysis of phage-inoculated cultures. The adsorption to the cell wall was found to be reversible upon dilution of the cell wall-adsorbed phage. In a reaction step that apparently follows adsorption to the cell wall, all seven phages adsorbed to a host membrane protein named PIP. This was indicated by the inability of all seven phages to infect a strain selected for resistance to phage c2 and known to have a defective PIP protein. All seven phages were inactivated in vitro by membranes from wild-type cells but not by membranes from the PIP-defective, phage c2-resistant strain. The mechanism of membrane inactivation was an irreversible adsorption of the phage to PIP, as indicated by adsorption of [35S] methionine-labeled phage c2 to purified membranes from phage-sensitive cells but not to membranes from the resistant strain, elimination of adsorption by pretreatment of the membranes with proteinase K, and lack of dissociation of 35S from the membranes upon dilution. Following membrane adsorption, ejection of phage DNA occurred rapidly at 30°C but not at 4°C. These results suggest that many lactococcal phages adsorb initially to the cell wall and subsequently to host cell membrane protein PIP, which leads to ejection of the phage genome.  相似文献   

5.
The possibility that selective inhibition of phage by antibiotic may be achieved by using bacterial mutant resistant to the antibiotic was investigated in the system of HM-phages of Clostridium saccharoperbutylacetonicum, a butanol-producing bacterium.

Consequently, it was found that Oxytetracycline, using the antibiotic-resistant mutant as host, inhibited selectively the growth of HM-phages. The bacterial mutant termed type A (one-step mutant resistant to 30 μg/ml of Oxytetracycline) did not permit the growth of HM-phages (HM 2 and HM 3) in the presence of the antibiotic (ca. 10 μg/ml), though it permitted the growth of the phages in the absence of the antibiotic.

An analysis of the mode of action of Oxytetracycline in HM 2-phage system revealed the following, (i) The antibiotic had a slight phagicidal action, (ii) It did not prevent the phage adsorption, (iii) It inhibited the protein synthesis in phage-infected cells, (iv) It inhibited the lysis of infected cells. Active phages were, however, not detected when the lysis-inhibited cells were artificially lysed.

Another type of bacterial mutant was also encountered. In this mutant termed type B the development of resistance to Oxytetracycline (30 μg/ml) was associated with a simultaneous loss of sensitivity to particular phages (HM 2 group).  相似文献   

6.
Virulent lactococcal prolate (or c2-like) phages are the second most common phage group that causes fermentation failure in the dairy industry. We have mapped two host range determinants in two lactococcal prolate phages, c2 and 923, for the host strains MG1363 and 112. Each phage replicates on only one of the two host strains: c2 on MG1363 and 923 on 112. Phage-phage recombinants that replicated on both strains were isolated by a new method that does not require direct selection but rather employs an enrichment protocol. After initial mixed infection of strain 112, two rotations, the first of which was carried out on strain MG1363 and the second on 112, permitted continuous amplification of double-plating recombinants while rendering one of the parent phages unamplified in each of the two rotations. Mapping of the recombination endpoints showed that the presence of the N-terminal two-thirds of the tail protein L10 of phage c2 and a 1,562-bp cosR-terminal fragment of phage 923 genome overcame blocks of infection in strains MG1363 and 112, respectively. Both infection inhibition mechanisms act at the stage of DNA entry; in strain MG1363, the infection block acts early, before phage DNA enters the cytoplasm, and in strain 112, it acts late, after most of the DNA has entered the cell but before it undergoes cos-end ligation. These are the first reported host range determinants in bacteriophage of lactic acid bacteria required for overcoming inhibition of infection at the stage of DNA entry and cos-end ligation.  相似文献   

7.
Intensive aquaculture conditions expose fish to bacterial infections, leading to significant financial losses, extensive antibiotic use and risk of antibiotic resistance in target bacteria. Flavobacterium columnare causes columnaris disease in aquaculture worldwide. To develop a bacteriophage-based control of columnaris disease, we isolated and characterized 126 F. columnare strains and 63 phages against F. columnare from Finland and Sweden in 2017. Bacterial isolates were virulent on rainbow trout (Oncorhynchus mykiss) and fell into four previously described genetic groups A, C, E and G, with genetic groups C and E being the most virulent. Phage host range studied against a collection of 227 bacterial isolates (from 2013 to 2017) demonstrated modular infection patterns based on host genetic group. Phages infected contemporary and previously isolated bacterial hosts, but bacteria isolated most recently were generally resistant to previously isolated phages. Despite large differences in geographical origin, isolation year or host range of the phages, whole-genome sequencing of 56 phages showed high level of genetic similarity to previously isolated F. columnare phages (Ficleduovirus, Myoviridae). Altogether, this phage collection demonstrates a potential for use in phage therapy.  相似文献   

8.
Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage–bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage–bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage–bacteria networks.  相似文献   

9.
细菌常受到数量众多的噬菌体感染,宿主细菌在和噬菌体竞赛中进化出多样化的分子策略,流产感染(abortive infection,Abi)是其中之一。毒素-抗毒素系统(toxin-antitoxin system,TA)会在细菌受到压力胁迫时表达并介导细菌的低代谢甚至休眠,还能直接减少子代噬菌体形成。此外,部分毒素序列和结构与Cas蛋白高度同源,噬菌体甚至会编码抗毒素类似物来阻遏对应毒素的活性。这表明流产感染中细菌死亡过程导致的噬菌体感染失败与TA功能高度重合,TA可能是噬菌体侵染宿主的主要阻力和防御力量之一。文中基于TA系统的分类和功能,对参与噬菌体流产感染的TA系统进行了综述,并预测具有流产功能的TA系统和其在抗生素开发和疾病治疗中的应用前景。这有助于认识细菌-噬菌体相互作用,并指导噬菌体治疗和合成生物学。  相似文献   

10.
Bacteriophages are the natural predators of bacteria and are available abundantly everywhere in nature. Lytic phages can specifically infect their bacterial host (through attachment to the receptor) and use their host replication machinery to replicate rapidly, a feature that enables them to kill a disease-causing bacteria. Hence, phage attachment to the host bacteria is the first important step of the infection process. It is reported in this study that the receptor could be an LPS which is responsible for the attachment of the Sfk20 phage to its host (Shigella flexneri 2a). Phage Sfk20 bacteriolytic activity was examined for preliminary optimization of phage titer. The phage Sfk20 viability at different saline conditions was conducted. The LC–MS/MS technique used here for detecting and identifying 40 Sfk20 phage proteins helped us to get an initial understanding of the structural landscape of phage Sfk20. From the identified proteins, six structurally significant proteins were selected for structure prediction using two neural network systems: AlphaFold2 and ESMFold, and one homology modeling software: Phyre2. Later the performance of these modeling systems was compared using various metrics. We conclude from the available and generated information that AlphaFold2 and Phyre2 perform better than ESMFold for predicting Sfk20 phage protein structures.  相似文献   

11.
The effect of male-specific filamentous deoxyribonucleic acid (f1) and isometric ribonucleic acid (MS2) bacteriophages on the formation of mating pairs in Escherichia coli conjugation was examined directly in the Coulter counter. When a sufficient multiplicity of infection (MOI) was used, the f1 phage immediately and completely inhibited the formation of mating pairs. On the other hand, the MS2 phage at a relatively high MOI also inhibited the formation of mating pairs significantly although not completey. The inhibitory effect of MS2 phage was dependent on the time of addition and the MOI used. At relatively low MOI (<20), the MS2 phage showed some inhibitory effect when added to a male culture prior to mixing with females, whereas no effect was observed when phages were added after mating pair formation had already commenced. At a high MOI (>400) MS2 phage disrupted the mating pairs already formed. Some preformed mating pairs were resistant to the high MOI of MS2 phages, however, and the "sensitive" (to high MOI) mating pairs seem to mature into "resistant" mating pairs as a function of time. We conclude that the tip of an F pilus is the specific attachment site for mating. The following process of mating pair formation has been formulated by deduction. (i) The sides of F pili weakly contact female cells, (ii) then the tips of F pili attach to the specific receptor sites to form initial mating pairs, and (iii) those pairs mature into mating pairs that are resistant to the high MOI of MS2 phages. The high MOI of MS2 prevents the first step, whereas f1 phages affect the second step-the binding between the tips of F pili and the receptor sites.  相似文献   

12.
Bacterial viruses (phages) are abundant, ecologically important biological entities. However, our understanding of their impact is limited by model systems that are primarily not well represented in nature, e.g. Enterophages and their hosts. Here, we investigate genomic characteristics and infection strategies among six aquatic Bacteroidetes phages that represent two genera of exceptionally large (~70–75 kb genome) podoviruses, which were isolated from the same seawater sample using Cellulophaga baltica as host. Quantitative host range studies reveal that these genera have contrasting narrow (specialist) and broad (generalist) host ranges, with one‐step growth curves revealing reduced burst sizes for the generalist phages. Genomic comparisons suggest candidate genes in each genus that might explain this host range variation, as well as provide hypotheses about receptors in the hosts. One generalist phage, φ38:1, was more deeply characterized, as its infection strategy switched from lytic on its original host to either inefficient lytic or lysogenic on an alternative host. If lysogenic, this phage was maintained extrachromosomally in the alternative host and could not be induced by mitomycin C. This work provides fundamental knowledge regarding phage‐host ranges and their genomic drivers while also exploring the ‘host environment’ as a driver for switching phage replication mode.  相似文献   

13.
A clonal population of pathogenic Vibrio parahaemolyticus O3 : K6 serovar has spread in coastal waters, causing outbreaks worldwide since 1996. Bacteriophage infection is one of the main factors affecting bacterial strain concentration in the ocean. We studied the occurrence and properties of phages infecting this V. parahaemolyticus pandemic strain in coastal waters. Analysing 143 samples, phages were found in 13. All isolates clustered in a closely related group of podophages with at least 90% nucleotide sequence identity in three essential genes, despite distant geographical origins. These bacteriophages were able to multiply on the V. parahaemolyticus pandemic strain, but the impact on host concentration and subsequent growth was negligible. Infected bacteria continued producing the phage but were not lysogenized. The phage genome of prototype strain VP93 is 43 931 nucleotides and contains 337 bp direct terminal repeats at both ends. VP93 is the first non‐Pseudomonas phage related to the ΦKMV‐like subgroup of the T7 supergroup. The lack of a major effect on host growth suggests that these phages exert little control on the propagation of the pandemic strain in the environment. This form of phage growth can be modelled if phage‐sensitive and ‐resistant cells that convert to each other with a high frequency are present in clonal cultures of pandemic V. parahaemolyticus.  相似文献   

14.
It is generally thought that the adsorption rate of a bacteriophage correlates positively with fitness, but this view neglects that most phages rely only on exponentially growing bacteria for productive infections. Thus, phages must cope with the environmental stochasticity that is their hosts’ physiological state. If lysogeny is one alternative, it is unclear how strictly lytic phages can survive the host stationary phase. Three scenarios may explain their maintenance: (1) pseudolysogeny, (2) diversified, or (3) conservative bet hedging. To better understand how a strictly lytic phage survives the stationary phase of its host, and how phage adsorption rate impacts this survival, we challenged two strictly lytic phage λ, differing in their adsorption rates, with stationary phase Escherichia coli cells. Our results showed that, pseudolysogeny was not responsible for phage survival and that, contrary to our expectation, high adsorption rate was not more detrimental during stationary phase than low adsorption rate. Interestingly, this last observation was due to the presence of the “residual fraction” (phages exhibiting extremely low adsorption rates), protecting phage populations from extinction. Whether this cryptic phenotypic variation is an adaptation (diversified bet hedging) or merely reflecting unavoidable defects during protein synthesis remains an open question.  相似文献   

15.
The first step in phage infection is the recognition of, and adsorption to, a receptor located on the host cell surface. This reversible host adsorption step is commonly followed by an irreversible event, which involves phage DNA delivery or release into the bacterial cytoplasm. The molecular components that trigger this latter event are unknown for most phages of Gram-positive bacteria. In the current study, we present a comparative genome analysis of three mutants of Lactococcus cremoris 3107, which are resistant to the P335 group phage TP901-1 due to mutations that affect TP901-1 DNA release. Through genetic complementation and phage infection assays, a predicted lactococcal three-component glycosylation system (TGS) was shown to be required for TP901-1 infection. Major cell wall saccharidic components were analysed, but no differences were found. However, heterologous gene expression experiments indicate that this TGS is involved in the glucosylation of a cell envelope-associated component that triggers TP901-1 DNA release. To date, a saccharide modification has not been implicated in the DNA delivery process of a Gram-positive infecting phage.  相似文献   

16.
In direct measurements of phage λ DNA synthesis, we have detected an inhibition caused by the cII and cIII gene products. This inhibition was more clearly observed when P amber phages were grown in a permissive host, presumably because of the limitation in DNA synthesis due to uncomplete suppression. The inhibition takes place in cells infected at high multiplicity, but not in cells infected at low multiplicity. To explain these findings, we propose a model in which the bacterial population is heterogeneous with respect to its ability to support phage DNA synthesis. An initial limitation caused by host factors would be amplified by the action of the cII and cIII products, at high multiplicity only, and the resulting inhibition would be essential in the « choicetowards lysogeny.  相似文献   

17.
Studying phage codon adaptation is important not only for understanding the process of translation elongation, but also for reengineering phages for medical and industrial purposes. To evaluate the effect of mutation and selection on phage codon usage, we developed an index to measure selection imposed by host translation machinery, based on the difference in codon usage between all host genes and highly expressed host genes. We developed linear and nonlinear models to estimate the C→T mutation bias in different phage lineages and to evaluate the relative effect of mutation and host selection on phage codon usage. C→T-biased mutations occur more frequently in single-stranded DNA (ssDNA) phages than in double-stranded DNA (dsDNA) phages and affect not only synonymous codon usage, but also nonsynonymous substitutions at second codon positions, especially in ssDNA phages. The host translation machinery affects codon adaptation in both dsDNA and ssDNA phages, with a stronger effect on dsDNA phages than on ssDNA phages. Strand asymmetry with the associated local variation in mutation bias can significantly interfere with codon adaptation in both dsDNA and ssDNA phages.  相似文献   

18.
19.
Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host–parasite combinations with similar underlying infection genetics, as well as the development of phage therapy.  相似文献   

20.
The interaction between male-specific RNA phages and bacterial cells as well as the complete life cycle of RNA phages in the host cells are complicated phenomena. In this study, a mathematical model is proposed to describe the kinetics of RNA phage production in batch culture. The model consists of several important considerations: (1) adsorption and desorption of phages on cell pili, (2) injection and transport of viral RNA, (3) viral protein synthesis, (4) phage maturation, and (5) cell lysis. Experimental data of MS2 RNA phage production in E. coli C 300o bacteria culture were used to evaiuate the model parameters. Reasonably good fit was obtained between the model and one set of data. However, simulation study based on the estimated parameter values revealed a discrepancy between experimental observation and model prediction. It seems that variation both in F-piliation and in the competence of cells to be infected by phages through different phasae of growth must be taken into account in order to make the model useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号