首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Biophysical journal》2021,120(22):4905-4917
Computational models of cell mechanics allow the precise interrogation of cell shape change. These morphological changes are required for cells to survive in diverse tissue environments. Here, we present a mesoscale mechanical model of cell-substrate interactions using the level set method based on experimentally measured parameters. By implementing a viscoelastic mechanical equivalent circuit, we accurately model whole-cell deformations that are important for a variety of cellular processes. To effectively model shape changes as a cell interacts with a substrate, we have included receptor-mediated adhesion, which is governed by catch-slip bond behavior. The effect of adhesion was explored by subjecting cells to a variety of different substrates including flat, curved, and deformable surfaces. Finally, we increased the accuracy of our simulations by including a deformable nucleus in our cells. This model sets the foundation for further exploration into computational analyses of multicellular interactions.  相似文献   

2.
Cell proliferation affects both cellular geometry and topology in a growing tissue, and hence rules for cell division are key to understanding multicellular development. Epithelial cell layers have for long times been used to investigate how cell proliferation leads to tissue-scale properties, including organism-independent distributions of cell areas and number of neighbors. We use a cell-based two-dimensional tissue growth model including mechanics to investigate how different cell division rules result in different statistical properties of the cells at the tissue level. We focus on isotropic growth and division rules suggested for plant cells, and compare the models with data from the Arabidopsis shoot. We find that several division rules can lead to the correct distribution of number of neighbors, as seen in recent studies. In addition we find that when also geometrical properties are taken into account other constraints on the cell division rules result. We find that division rules acting in favor of equally sized and symmetrically shaped daughter cells can best describe the statistical tissue properties.  相似文献   

3.
Bone fractures heal through a complex process involving several cellular events. This healing process can serve to study factors that control tissue growth and differentiation from mesenchymal stem cells. The mechanical environment at the fracture site is one of the factors influencing the healing process and controls size and differentiation patterns in the newly formed tissue. Mathematical models can be useful to unravel the complex relation between mechanical environment and tissue formation. In this study, we present a mathematical model that predicts tissue growth and differentiation patterns from local mechanical signals. Our aim was to investigate whether mechanical stimuli, through their influence on stem cell proliferation and chondrocyte hypertrophy, predict characteristic features of callus size and geometry. We found that the model predicted several geometric features of fracture calluses. For instance, callus size was predicted to increase with increasing movement. Also, increases in size were predicted to occur through increase in callus diameter but not callus length. These features agree with experimental observations. In addition, spatial and temporal tissue differentiation patterns were in qualitative agreement with well-known experimental results. We therefore conclude that local mechanical signals can probably explain the shape and size of fracture calluses.  相似文献   

4.
Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes.  相似文献   

5.
Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.  相似文献   

6.
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.  相似文献   

7.
Tumour cells usually live in an environment formed by other host cells, extra-cellular matrix and extra-cellular liquid. Cells duplicate, reorganise and deform while binding each other due to adhesion molecules exerting forces of measurable strength. In this paper, a macroscopic mechanical model of solid tumour is investigated which takes such adhesion mechanisms into account. The extracellular matrix is treated as an elastic compressible material, while, in order to define the relationship between stress and strain for the cellular constituents, the deformation gradient is decomposed in a multiplicative way distinguishing the contribution due to growth, to cell rearrangement and to elastic deformation. On the basis of experimental results at a cellular level, it is proposed that at a macroscopic level there exists a yield condition separating the elastic and dissipative regimes. Previously proposed models are obtained as limit cases, e.g. fluid-like models are obtained in the limit of fast cell reorganisation and negligible yield stress. A numerical test case shows that the model is able to account for several complex interactions: how tumour growth can be influenced by stress, how and where it can generate cell reorganisation to release the stress level, how it can lead to capsule formation and compression of the surrounding tissue.  相似文献   

8.
We present a hierarchical method to predict protein tertiary structure models from sequence. We start with complete enumeration of conformations using a simple tetrahedral lattice model. We then build conformations with increasing detail, and at each step select a subset of conformations using empirical energy functions with increasing complexity. After enumeration on lattice, we select a subset of low energy conformations using a statistical residue-residue contact energy function, and generate all-atom models using predicted secondary structure. A combined knowledge-based atomic level energy function is then used to select subsets of the all-atom models. The final predictions are generated using a consensus distance geometry procedure. We test the feasibility of the procedure on a set of 12 small proteins covering a wide range of protein topologies. A rigorous double-blind test of our method was made under the auspices of the CASP3 experiment, where we did ab initio structure predictions for 12 proteins using this approach. The performance of our methodology at CASP3 is reasonably good and completely consistent with our initial tests.  相似文献   

9.
Cellular response to mechanical loading varies between the anatomic zones of the intervertebral disc. This difference may be related to differences in the structure and mechanics of both cells and extracellular matrix, which are expected to cause differences in the physical stimuli (such as pressure, stress, and strain) in the cellular micromechanical environment. In this study, a finite element model was developed that was capable of describing the cell micromechanical environment in the intervertebral disc. The model was capable of describing a number of important mechanical phenomena: flow-dependent viscoelasticity using the biphasic theory for soft tissues; finite deformation effects using a hyperelastic constitutive law for the solid phase; and material anisotropy by including a fiber-reinforced continuum law in the hyperelastic strain energy function. To construct accurate finite element meshes, the in situ geometry of IVD cells were measured experimentally using laser scanning confocal microscopy and three-dimensional reconstruction techniques. The model predicted that the cellular micromechanical environment varies dramatically between the anatomic zones, with larger cellular strains predicted in the anisotropic anulus fibrosus and transition zone compared to the isotropic nucleus pulposus. These results suggest that deformation related stimuli may dominate for anulus fibrosus and transition zone cells, while hydrostatic pressurization may dominate in the nucleus pulposus. Furthermore, the model predicted that micromechanical environment is strongly influenced by cell geometry, suggesting that the geometry of IVD cells in situ may be an adaptation to reduce cellular strains during tissue loading.  相似文献   

10.

Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.

  相似文献   

11.
Phenomenological computational models of tissue regeneration and bone healing have been only partially successful in predicting experimental observations. This may be a result of simplistic modeling of cellular activity. Furthermore, phenomenological models are limited when considering the effects of combined physical and biological interventions. In this study, a new model of cell and tissue differentiation, using a more mechanistic approach, is presented and applied to fracture repair. The model directly couples cellular mechanisms to mechanical stimulation during bone healing and is based on the belief that the cells act as transducers during tissue regeneration. In the model, the cells within the matrix proliferate, differentiate, migrate, and produce extracellular matrix, all at cell-phenotype specific rates, based on the mechanical stimulation they experience. The model is assembled from coupled partial differentiation equations, which are solved using a newly developed finite element formulation. The evolution of four cell types, i.e. mesenchymal stem cells, fibroblasts, chondrocytes and osteoblasts, and the production of extracellular matrices of fibrous tissue, cartilage and bone are calculated. The material properties of the tissues are iteratively updated based on actual amounts of extracellular matrix in material elements at progressive time points. A two-dimensional finite element model of a long bone osteotomy was used to evaluate the model's potential. The additional value of the presented model and the importance of including cell-phenotype specific activities when modeling tissue differentiation and bone healing, were demonstrated by comparing the predictions with phenomenological models. The model's capacity was established by showing that it can correctly predict several aspects of bone healing, including cell and tissue distributions during normal fracture healing. Furthermore, it was able to predict experimentally established alterations due to excessive mechanical stimulation, periosteal stripping and impaired effects of cartilage remodeling.  相似文献   

12.
We propose to define the complexity of an ecological model as the statistical complexity of the output it produces. This allows for a direct comparison between data and model complexity. Working with univariate time series, we show that this measure ‘blindly’ discriminates among the different dynamical behaviours a model can exhibit. We then search a model parameter space in order to segment it into areas of different dynamical behaviour and calculate the maximum complexity a model can generate. Given a time series, and the problem of choosing among a number of ecological models to study it, we suggest that models whose maximum complexity is lower than the time series complexity should be disregarded because they are unable to reconstruct some of the structures contained in the data. Similar reasoning could be used to disregard models’ subdomains as well as areas of unnecessary high complexity. We suggest that model complexity so defined better captures the difficulty faced by a user in managing and understanding the behaviour of an ecological model than measures based on a model ‘size’.  相似文献   

13.
Cell sorting is a dynamical cooperative phenomenon that is fundamental for tissue morphogenesis and tissue homeostasis. According to Steinberg's differential adhesion hypothesis, the structure of sorted cell aggregates is determined by physical characteristics of the respective tissues, the tissue surface tensions. Steinberg postulated that tissue surface tensions result from quantitative differences in intercellular adhesion. Several experiments in cell cultures as well as in developing organisms support this hypothesis.The question of how tissue surface tension might result from differential adhesion was addressed in some theoretical models. These models describe the cellular interdependence structure once the temporal evolution has stabilized. In general, these models are capable of reproducing sorted patterns. However, the model dynamics at the cellular scale are defined implicitly and are not well-justified. The precise mechanism describing how differential adhesion generates the observed sorting kinetics at the tissue level is still unclear.It is necessary to formulate the concepts of cell level kinetics explicitly. Only then it is possible to understand the temporal development at the cellular and tissue scales. Here we argue that individual cell mobility is reduced the more the cells stick to their neighbors. We translate this assumption into a precise mathematical model which belongs to the class of stochastic interacting particle systems. Analyzing this model, we are able to predict the emergent sorting behavior at the population level. We describe qualitatively the geometry of cell segregation depending on the intercellular adhesion parameters. Furthermore, we derive a functional relationship between intercellular adhesion and surface tension and highlight the role of cell mobility in the process of sorting. We show that the interaction between the cells and the boundary of a confining vessel has a major impact on the sorting geometry.  相似文献   

14.
We present a molecular and cellular phenomenon underlying the intriguing increase in phenotypic organizational complexity. For the same set of human–mouse orthologous genes (11 534 gene pairs) and homologous tissues (32 tissue pairs), human shows a greater fraction of tissue-specific genes and a greater ratio of the total expression of tissue-specific genes to housekeeping genes in each studied tissue, which suggests a generally higher level of evolutionary cell differentiation (specialization). This phenomenon is spectacularly more pronounced in those human tissues that are more directly involved in the increase of complexity, longevity and body size (i.e. it is reflected on the organismal level as well). Genes with a change in expression breadth show a greater human–mouse divergence of promoter regions and encoded proteins (i.e. the functional genomics data are supported by the structural analysis). Human also shows the higher expression of translation machinery. The upstream untranslated regions (5′UTRs) of human mRNAs are longer than mouse 5′UTRs (even after correction for the difference in genome sizes) and contain more uAUG codons, which suggest a more complex regulation at the translational level in human cells (and agrees well with the augmented cell specialization).  相似文献   

15.
16.
We report the development of new class of discrete models that can accurately describe the contact-inhibited proliferation of anchorage-dependent cells. The models are based on cellular automata, and they quantitatively account for contact inhibition phenomena occurring during all stages of the proliferation process: (a) the initial stage of "exponential" growth of cells without contact inhibition; (b) the second stage where cell colonies form and grow with few colony mergings; and (c) the final stage where proliferation rates are dominated by colony merging events. Model prediction are presented and analyzed to study the complicated dynamics of large cell populations and determine how the initial spatial cell distribution, the seeding density, and the geometry of the growth surface affect the observed proliferation rates. Finally, we present a model variant that can simulate contact-inhibited proliferation of asynchronous cell populations with arbitrary cell cycle-time distribution. The latter model can also compute the percentage of cells that are in a specific phase of their division cycle at a given time.  相似文献   

17.
The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment.  相似文献   

18.
The field of tissue engineering aims to produce living, biological constructs which possess the appropriate spatial ordering of cells and their extra cellular matrix products. The complexity of a single cell and its interactions in a large collective have made development of useful models to assist in tissue culture difficult, and consequentially most tissue culture endeavors are limited to trial and error approaches. Some cell types display a natural tendency to spontaneously self-assemble into large domains of parallel-oriented cells. In this work, we show that these cell culture systems can be studied in the context of continuous disorder-order phase transformations. We suggest that collective ordering of the cells is controlled by the amount of noise in the walk of the individual cells (directional persistence) because undifferentiated mesenchymal stem cells display a seven-times higher directional persistence than mature fibroblasts and have a 24-times larger final-oriented domain size, an observation that corresponds with collective ordering in self-propelled particle systems. The study of cell culture systems using analogies derived from statistical mechanics yields simple, practical models offering insight into how a long-range order can be obtained in tissue-engineered constructs, providing a new paradigm for managing operations with large collectives of living cells.  相似文献   

19.
Extracellular matrix (ECM) provides a dynamic three-dimensional structure which translates mechanical stimuli to cells. This local mechanical stimulation may direct biological function including tissue development. Theories describing the role of mechanical regulators hypothesize the cellular response to variations in the external mechanical forces on the ECM. The exact ECM mechanical stimulation required to generate a specific pattern of localized cellular displacement is still unknown. The cell to tissue inverse problem offers an alternative approach to clarify this relationship. Developed for structural dynamics, the inverse dynamics problem translates measurements of local state variables (at the cell level) into an unknown or desired forcing function (at the tissue or ECM level). This paper describes the use of eigenvalues (resonant frequencies), eigenvectors (mode shapes), and dynamic programming to reduce the mathematical order of a simplified cell–tissue system and estimate the ECM mechanical stimulation required for a specified cellular mechanical environment. Finite element and inverse numerical analyses were performed on a simple two-dimensional model to ascertain the effects of weighting parameters and a reduction of analytical modes leading toward a solution. Simulation results indicate that the reduced number of mechanical modes (from 30 to 14 to 7) can adequately reproduce an unknown force time history on an ECM boundary. A representative comparison between cell to tissue (inverse) and tissue to cell (boundary value) modeling illustrates the multiscale applicability of the inverse model.  相似文献   

20.
Mathematical models provide a suitable platform to test hypotheses on the relation between local mechanical stimuli and responses to cardiac structure and geometry. In the present model study, we tested hypothesized mechanical stimuli and responses in cardiac adaptation to mechanical load on their ability to estimate a realistic myocardial structure of the normal and situs inversus totalis (SIT) left ventricle (LV). In a cylindrical model of the LV, 1) mass was adapted in response to myofiber strain at the beginning of ejection and to global contractility (average systolic pressure), 2) cavity volume was adapted in response to fiber strain during ejection, and 3) myofiber orientations were adapted in response to myofiber strain during ejection and local misalignment between neighboring tissue parts. The model was able to generate a realistic normal LV geometry and structure. In addition, the model was also able to simulate the instigating situation in the rare SIT LV with opposite torsion and transmural courses in myofiber direction between the apex and base [Delhaas et al. (6)]. These results substantiate the importance of mechanical load in the formation and maintenance of cardiac structure and geometry. Furthermore, in the model, adapted myocardial architecture was found to be insensitive to fiber misalignment in the transmural direction, i.e., myofiber strain during ejection was sufficient to generate a realistic transmural variation in myofiber orientation. In addition, the model estimates that, despite differences in structure, global pump work and the mass of the normal and SIT LV are similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号