首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Abstract Lipopolysaccharide (LPS) was administered into sheep red blood cells (SRBC)-primed mice, and the effect of LPS on SRBC-specific memory cells was investigated. Spleen cells from SRBC-primed mice which were injected with LPS exhibited much lower in vitro secondary plaque-forming cells (PFC) responses to SRBC than those from untreated SRBC-primed mice. The in vitro anti-SRBC response of the spleen cells to LPS was also reduced. The combination experiments of B cells and T cells from SRBC-primed mice which were injected with or without LPS demonstrated that the reduction of immune responses to SRBC after administration of LPS was caused by the defect of SRBC-specific B memory cells, but not T memory cells. B cell type rosette-forming cells (RFC) for SRBC markedly decreased after injection of LPS, while PFC as antibody-forming cells did not increase subsequently. Therefore, the reduction of RFC was not due to their differentiation into PFC. The lymphoid follicles in the spleens from mice injected with LPS were stained positively by in situ nick end labeling specific for fragmented DNA. A large percentage of Ig+ spleen cells from SRBC-primed mice which were injected with LPS was also stained positively. The injection of glucocorticoids into SRBC-primed mice induced similar reduction of B memory cells. It was suggested that LPS might induce apoptosis of B memory cells and regulate B cell memory in antigen-nonspecific manner.  相似文献   

2.
CBA and C57B1 mice (high and low responders to sheep red blood cells, respectively) were injected intravenously with syngeneic lymph node, marrow, spleen, or thymus cells together with sheep red blood cells (SRBC), and the production of antibody-forming cells (AFC) was assayed in the spleen. Transfer of lymph node, marrow, spleen, or thymus cells led to a significant enhancement of immune responsiveness in low-responding C57B1 mice. In contrast, transfer of marrow, lymph node, or spleen cells to high-responding CBA mice was accompanied by a decline in AFC production. These effects were magnified if syngeneic cell donors had been primed with SRBC; suppression in CBA mice and stimulation in C57B1 mice were especially pronounced after transfer of SRBC-primed lymphoid cells. Pretreatment of CBA donors with cyclophosphamide in a dose causing selective B-cell depletion completely abrogated the suppression of immune responsiveness. A large dose (107) of syngeneic B cells injected together with SRBC suppressed the accumulation of AFC in both CBA and C57B1 mice. No suppression of immune responsiveness was observed after transfer of intact thymus cells, hydrocortisone-resistant thymocytes, or activated T cells. We conclude that suppression of the immune response to SRBC is induced by B cells. At the same time, there is a possibility that the addition of “excess” B cells acts as a signal, triggering suppressor T cells.  相似文献   

3.
Specific depletion from normal CBA mouse spleen cells of those bound on pigeon erythrocyte (PRBC) immunoabsorbent columns before transfer of the depleted population into irradiated syngeneic recipients resulted in elimination of the anti-PRBC responsiveness as assessed by rosette (RFC) and hemolytic plaque (PFC) formation. The anti-sheep erythrocyte (SRBC) responses of cell populations treated in the same manner remained unimpaired. When, however, these populations were stimulated with both PRBC and muramyl dipeptide (MDP), an early recovery of specific anti-PRBC responsiveness was produced. PFC response in particular, suddenly increased between the fourth and fifth day after transfer and stimulation thus exhibiting a doubling time of only 4 to 6 hr. This effect of MDP was T-cell dependent since treatment of the depleted population with anti-θ antigen serum and complement hindered early recovery. Depleted populations stimulated with PRBC alone resumed their T-dependent RFC (but not PFC) responsiveness after the eighth day. In spite of the existence of these educated T cells, a second stimulation on the tenth day with PRBC was unable to elicit a specific PFC response. On the other hand stimulation with MDP alone on the day of cell transfer (Day 0) followed by stimulation with PRBC on Day 10 resulted in a specific PFC response on Day 15. Thus, MDP appeared to do more than simply promote education of T cells by antigen. In vitro cultures of depleted populations also recovered their specific reactivity when stimulated by antigen and MDP.  相似文献   

4.
Abnormal polyclonal B cell activation in NZB/NZW F1 mice   总被引:9,自引:0,他引:9  
Spleen cells from autoimmune (10-mont-old) NZB/NZW (B/W) mice failed to generate appreciable numbers of antibody-forming cells (AFC) in vitro to TNP-substituted sheep erythrocytes in response to the polyclonal B cell activators (PBA), LPS and PPD, despite normal DNA synthetic responses to these agents and normal AFC responses to TNP-Ficoll. The failure to respond to PBA in old B/W mice was not due to suppressor T cells since anti-brain-associated-theta-treated spleen cells still failed to generate AFC in response to PBA. The defect was age-related since cells from young B/W mice generated vigorous AFC responses to PBA. It is suggested that the failure of the spleen cells of old B/W mice to generate AFC is a result of in vitro polyclonal B cell activation in the course of autoantibody formation.  相似文献   

5.
The immune responses of Mongolian gerbils, Meriones unguiculatus, to sheep red blood cells (SRBC) were studied as compared to those of mice. After a single injection of SRBC, hemagglutinin titers in gerbils were significantly lower and hemolytic plaque-forming cells (PFC) in the spleen were less in number as compared to the response of mice. In gerbils the PFC response to a higher dose of bacterial lipopolysaccharide (LPS) was rather higher than in mice. The delayed-type hypersensitivity (DTH) assay on the foot-pad revealed that the responsiveness was considerably lower in gerbils than in mice.  相似文献   

6.
The immune responses of allogeneic mixed spleen cell cultures (MLC) to the T-dependent antigen, SRBC, and to the T-independent antigen, DNP-PAA, were investigated. The immune response to DNP-PAA in MLC with certain strain combinations was always suppressed as compared with the expected PFC response calculated from the PFC responses of the individual strains. This suppression was eliminated by treating the spleen cells with RAMB antiserum plus complement before the incubation of the MLC with DNP-PAA. It can be concluded that the suppression in the PFC response to the T-independent antigen DNP-PAA in MLC is due to the generation of suppressor T-cells. The PFC response to the T-dependent antigen, SRBC, in MLC showed either suppression, no change, or rarely augmenation, suggesting that the allogeneic mixed spleen cell cultures can generate both suppressor and helper T cells and that the balance between helper and suppressor activity regulates the PFC response to a T-dependent antigen. Suppressor activity was also generated in a one-way MLC, but the degree of suppression depended upon which of the two strains was responding. Similar amounts of thymidine were incorporated in the one-way MLR irrespective of which strains was responding. Thus, the extent of proliferation in one-way MLR is not related to the degree of suppressor activity generated. The results further indicate that a difference between two strains in the I-C, S, and G regions of the major histocompatibility complex is required to generate suppressor activitiy that can depress the response to a T-independent antigen, MLC between strains differing in K, I-A, I-B, I-J, I-E, and D regions generate little or no suppressor activity in this system.  相似文献   

7.
The paper describes the effect of mouse antiserum against isologous aggregated immunoglobulins (termed MAAS) on the kinetics of rosette-forming and antibody-forming cells (RFC and AFC, respectively) in mice immunized with SRBC. MAAS effect was assessed in vivo by injecting this serum for 5 days to mice CBA, combining the first injection with the injection of 5.10(7) SRBC. MAAS administration to mice immunized with SRBC induced a marked reduction of RFC in the spleen on the 5th and 9th days after the immunization. At the same periods MAAS produced no significant effect on the proliferation of AFC producing IgM-hemagglutinins. At the same time MAAS intensified the IgG-AFC proliferation in the period of the maximal content of these cells in the spleen of the immunized mice. After the MAAS absorption with the immune complexes formed by the mouse IgG-antibodies this serum largely lost its capacity to block RFC in vivo. On the basis of the data obtained it is suggested that the property of MAAS to influence the accumulation of RFC and AFC producing IgG-hemagglutinins is caused by the factor reacting with the immune complex formed by mouse IgG-antibodies. Possibly this factor represented antibodies against the aggregated immunoglobulins of this class.  相似文献   

8.
An attempt was made to determine if there is any common mechanism in the enhanced antibody response caused either by injection of adjuvant, such as bacterial endotoxin (LPS) and complexed polynucleotides, or by secondary antigenic stimulation. LPS inoculated in mice 4 days before injection of sheep red blood cells (SRBC) and polyA:U invalidated the adjuvant effect of polyA:U injected together with SRBC, and the hemolysin plaque-forming cell (PFC) response of such mice was similar to that of the mice which received SRBC alone. When mice primed with SRBC 24 days in advance were injected with LPS and 4 days later re-stimulated with SRBC, their PFC response to the secondary stimulation was suppressed to less than one tenth of the normal secondary PFC response. The suppressive effect of LPS on the secondary antibody response was abolished if the serum collected from mice injected with LPS was given to the primed and LPS-injected mice at the time of the secondary antigenic stimulation. From these results we discussed the possibility that some common mediator might play a role in the enhanced antibody response elicited by either adjuvant injection or secondary injection of antigen.  相似文献   

9.
Selective impairment of B cell function by Neisseria meningitidis   总被引:1,自引:0,他引:1  
Spleen cells from CBA/J mice infected with Neisseria meningitidis displayed depressed in vitro plaque-forming cell (PFC) responses to T-dependent (sheep red blood cell; SRBC) and T-independent (TNP-LPS, TNP-Ficoll) antigens. The inhibition was observed over a wide range of antigen concentrations. The decreased responsiveness of splenocytes from infected mice was due to a selective impairment of B-cell function since helper-T-cell activity was intact in infected mice as shown by the ability of T-enriched lymphocytes to cooperate with normal B-enriched lymphocytes in the generation of an anti-SRBC response, accessory macrophage function was preserved since adherent spleen cells from bacteria-injected mice were shown to produce normal or increased levels of IL-1 and were able to cooperate with normal non-adherent spleen cells in the generation of PFC against SRBC. Addition of peritoneal cells from normal animals or extraneous IL-1 both failed to restore normal PFC responses in cultures of splenocytes from infected mice. Finally, B-enriched lymphocytes from infected mice produced poor anti-SRBC responses when cultured with either Con A supernatant or T-enriched lymphocytes from normal or infected mice. Cell-mixing experiments failed to detect the presence of suppressor cells in cultures of unfractionated spleen cells or B-enriched lymphocytes from infected mice. Therefore, the immunological unresponsiveness associated with a Neisseria meningitidis infection was attributed to a meningococcus-induced defect(s) in B-cell function. In vivo polyclonal B-cell activation leading to clonal exhaustion did not play a major role in the depression of humoral responses since meningococcal infection induced little or no polyclonal Ig secretion.  相似文献   

10.
The influence of unilateral nephrectomy on the degree of humoral immune response to T-independent (polyvinylpyrrolidone, PVP) and T-dependent (sheep red blood cells, SRBC) antigens was studied. The increase in the number in antibody-forming cells (AFC) and nonspecific immunoglobulin-forming cells (nIFC) was investigated by means of the adaptive transfer model. The lethally irradiated recipients were injected with the antigen and also the spleen cells of operated and intact donors. PVP did not induce significant alterations of antibody genesis in mice receiving spleen cells of unilaterally nephrectomized animals comparing with recipients of intact spleen cells. At the same time, the kidney operation induced the increase in the number of AFC and nIFC when the SRBC were used. Hence the activation of humoral immune response induced by kidney operation was related not to the direct activation of B-lymphocytes but to T-cells. The possible causes of this activation were analyzed. Spleen cells of operated animals enhance both specific and antigen-dependent nonspecific immune response.  相似文献   

11.
Mouse bone marrow is barely capable of plaque-forming cell (PFC) activity during the primary response to sheep red blood cells (SRBC). However, during secondary-type responses, it becomes the major organ, containing IgM, IgG, and IgA PFC. In the present paper, the influence of splenectomy (Sx) upon the secondary bone marrow PFC response to SRBC was investigated. When previously primed mice were splenectomized just before the second intravenous (iv) injection of SRBC, the effect of Sx upon the height of the bone marrow PFC response was dependent on the booster dose. Sx just before a booster of 106 SRBC iv almost completely prevented bone marrow PFC activity, whereas an iv booster dose of 4 × 108 SRBC evoked a normal IgM, IgG, and IgA PFC response in Sx mice. Apparently low doses of iv administered antigen require the spleen in order to evoke antibody formation in the bone marrow. Experiments with parabiotic mice, consisting of Sx and sham-Sx mice, showed that this facilitating influence of the spleen upon bone marrow antibody formation occurs via the blood stream. In a subsequent study, it was investigated whether the spleen is required throughout the bone marrow PFC response or only during the few days of the initiation phase. Therefore, mice were splenectomized at different intervals after a booster injection of 106 SRBC iv. It appeared that Sx 2 days after the booster injection could still prevent the normal bone marrow PFC activity, whereas Sx at Day 4 could no longer do so. Apparently, after an iv booster injection, the spleen is only required for initiation of the bone marrow PFC response and not for the maintenance of this PFC activity thereafter.  相似文献   

12.
The number of direct and indirect plaque-forming cells (PFC) and the serum hemolytic activity was determined for A/He, C57BL/6J, and B6AF1 mice responding to multiple injections of sheep red blood cells (SRBC). Although the kinetics of the primary response differed, all mice had high numbers of both direct and indirect PFC and low-titered 2-mercaptoethanol (2-ME) sensitive serum antibody. Following multiple SRBC injections, the A/He spleens contained predominantly IgG producing PFC. Their serum antibody activity was resistant to 2-ME signifying the presence of IgG. The serum activity of both the C57BL/6J and B6AF1 mice was sensitive to 2-ME (IgM antibody) over the course of immunization, and although there was a definite IgM PFC memory response, the presence of 7S memory PFC was questionable. The results are discussed in terms of the maturation of the antibody response to SRBC and of the question of the postulated IgM and IgG switch.  相似文献   

13.
A solubilized sheep red blood cell (SRBC) antigen (supernatant fraction obtained by centrifuging 107-2 × 108 sonicated SRBC at 6 × 104 g for 30 min [Sup-SRBC]), whose ability to inhibit anti-SRBC plaque formation was 70% of that of the original sonicated SRBC, was unable to elicit a detectable antibody response in either unprimed or SRBC-primed mice. However, Sup-SRBC as well as intact SRBC antigens generated memory for the secondary response, which was transferable to irradiated syngeneic recipients by injection of immune spleen cells. The memory generated by Sup-SRBC involved helper memory for anti-trinitrophenyl group (TNP) response to challenge with TNP-conjugated SRBC. Increase in the helper T cell memory in the spleens of Sup-SRBC-primed mice was also demonstrated by an in vitro culture experiment and by an adoptive cell transfer experiment. In contrast, no detectable B cell memory was generated by Sup-SRBC. Repeated stimulation with Sup-SRBC never induced significant antibody response but reduced the level of memory. A single injection of a low dose (106) of SRBC also failed to induce a definite primary antibody response generating memory for the secondary response. However, repeated stimulation with this dose of SRBC induced a high antibody response and generated good memory. From these results it is suggested that the intact structure of SRBC is required for the activation of B cells, but is not necessary for the stimulation of T cells.  相似文献   

14.
Mouse spleen cell antigenic responses to the thymic-dependent antigen sheep red blood cells (SRBC), and the thymic-independent antigens, E. Coli lipopolysaccharide (LPS) and pneumococcal polysaccharides Type I and II (SI, SII) were studied as as a function of age, employing both in vitro spleen cell stimulation and plaque-forming cell (PFC) assay systems. Primary spleen cell proliferative and PFC responses to SRBC, were either absent or meager in comparison to adult (8–12 weeks) values for the first 3 weeks of life. Thereafter responses rose achieving adult values between 4 and 8 weeks of age. The inability of young mice to respond to SRBC was not because of a different immunizing dose requirement for SRBC, since immunization with SRBC over a 200-fold range did not enhance their capability to respond. Also, addition of adherent cells or macrophages from adult mice did not enhance the immune responses of young mice. Furthermore, immunization of 2–4 week old mice with SRBC inhibited the secondary response to SRBC. In contrast, young murine spleen cell proliferative and PFC responses to SI, SII, and LPS were approximately the same as the adult by 7–14 days of life. These data suggest that B-cell immunologic activity, as measured by immunologic assays utilized in this study, develops much earlier than does T-cell responsiveness.  相似文献   

15.
A study was performed to clarify the roles of primary and secondary injections of antigen and adjuvant (capsular polysaccharide of Klebsiella pneumoniae, CPS-K) in induction of antibody responses and in development of immunological memory in mice to bovine serum albumin (BSA). A primary injecion of BSA alone neither induced significant primary antibody response nor increased immunological memory for a secondary antibody response but, if primary injections of BSA and CPS-K were performed simultaneously, high antibody responses were induced. Moreover, a prior injection of BSA alone or CPS-K alone decreased the level of primary antibody response and the degree of increase in memory following the subsequent injection of BSA mixed with CPS-K. In contrast, a secondary injection of BSA alone into mice once primed with a mixture of BSA and CPS-K elicited very high secondary type antibody response and increased secondarily the memory for a tertiary antibody response. Injection of CPS-K simultaneously with or shortly before or after the secondary injection of BSA did not increase the level of the secondary antibody response and the degree of the secondary increase in memory. Augmentation of the secondary antibody response was elicited by simultaneous injection of CPS-K only when the secondary response was induced inadequately by a suboptimum or supraoptimum dose of antigen.  相似文献   

16.
The effect of lipopolysaccharide (LPS) on anti-trinitrophenyl (TNP) direct plaque-forming cells (PFC) in the spleen of mice and the affinity of antibodies produced by these PFC were examined. Simultaneous injection of bacterial LPS and TNP-coupled sheep red blood cells(SRBC) induced an obvious increase in anti-TNP PFC numbers and heightened the antibody affinity at cellular levels. The higher the doses of LPS, the greater the effects. Concomitant injection of LPS in TNP-coupled homologous mouse red blood cells (MRBC) also elicited good anti-TNP PFC response and slightly heightened the affinity. Priming with LPS and SRBC together 7 days prior to immunization did not enhance the anti-TNP PFC response and it was difficult to alter the affinity. Preinjection with small amounts of TNP-MRBC or -rabbit red blood cells and LPS simultaneously did not induce any significant increase in anti-TNP PFC secondary response after reimmunization with TNP-SRBC, but obviously heightened the antibody affinity. Injection of LPS simultaneously with the secondary immunization was effective for both the anti-TNP PFC response and the alteration of antibody affinity. These results suggest that LPS affects the control mechanisms of anti-TNP antibody affinity via the non-thymus-derived helper cell function, and the adjuvant action and alteration of antibody affinity induced by LPS are regulated by different mechanisms.  相似文献   

17.
Isologous serum of CBA mice immunized with rabbit immunoglobulins (ARIS) contained a factor capable of inactivating rosette-forming splenocytes (RFC) in vitro from the same strain of mice immunized with SRBC. When mouse SRBC immunization was carried out against the background of ARIS injection the court of RFC to SRBC at the peak of immune response was 30% of that of mice injected with SRBC and normal isologous serum. A decrease of RFC count was the result of disappearance of the theta-negative RFC. Passive ARIS immunization failed to influence the antigen-induced proliferation of the antibody-forming cells and the synthesis of antibodies against SRBC.  相似文献   

18.
B Cell Tolerance     
The mechanisms of B cell tolerance were studied in an attempt to learn whether B cells rendered tolerant are present in the immune system in a potentially responsive form. The author tested the in vitro anti-trinitrophenyl (TNP) antibody-forming cell (anti-TNP AFC) response to TNP-immunogens and polyclonal B cell activators (PBA) of spleen cells taken from mice injected with a tolerogen, TNP-carboxymethylcellulose (TNP-CMC). Spleen cells from mice injected 5 days previously with 10 μg of TNP-CMC did not respond to TNP-sheep red blood cells (TNP-SRBC), T-dependent (TD) antigen or TNP-Ficoll, T-independent (TI) antigen. However, the same spleen cells responded to PBA, lipopolysaccharide (LPS) of Salmonella enteritidis and purified protein derivative (PPD) of BCG. The results indicate that B cells specific for TNP are present in a potentially responsive form. Spleen cells from mice injected with 500 μg of TNP-CMC did not respond to either TNP-immunogens or PBA. The state of unresponsiveness to PBA lasted for 12 days after the tolerogen injection. Responsiveness to PBA reappeared within the short period of 2 days, whereas unresponsiveness to TNP-immunogens lasted much longer. Unresponsiveness to PBA was relieved considerably by treating tolerant spleen cells with the proteolytic enzyme trypsin before in vitro stimulation. These results indicate that B cells rendered refractory are present in the immune system in a potentially responsive form.  相似文献   

19.
The effect of acute hepatotoxin exposure on in vivo and in vitro immune responses were investigated in inbred mice. Splenic anti-SRBC PFC responses were slightly enhanced by carbon tetrachloride or galactosamine administration 5 hr prior to immunization. Whereas splenic anti-SRBC PFC responses were slightly enhanced in euthymic mice exposed to carbon tetrachloride 5 hr prior to immunization, immune responses to the TI antigens, Fl-LPS, Fl-Ficoll, and TNP-LPS, were significantly suppressed. Athymic mice receiving similar hepatotoxin exposure elicited enhanced immune responses to the TI immunogens, thereby suggesting that the activities of B cells and macrophages are enhanced in treated animals and in euthymic mice, T suppressor cells are also activated. By admixture of purified B- and T-cell and macrophage populations from either carbon tetrachloride-treated or control animals, it was demonstrated that hepatotoxin exposure also induces suppressor T cells regulating immune responses to the T-dependent antigen, SRBC, and that macrophages from treated animals are more functional. Further, B-cell responsiveness is enhanced. In addition to these observations, an active factor could be demonstrated in sera from hepatotoxin-treated animals which augments immune responses to SRBC in normal mice and promotes immune responses to this antigen in athymic mice. These findings indicate that the effects of acute hepatotoxin exposure are multifocal, influencing the activity of lymphoid and accessory cells.  相似文献   

20.
The effect of lipopolysaccharide (LPS) on anti-trinitrophenyl (TNP) direct plaque-forming cells (PFC) in the spleen of mice and the affinity of antibodies produced by these PFC were examined. Simultaneous injection of bacterial LPS and TNP-coupled sheep red blood cells(SRBC) induced an obvious increase in anti-TNP PFC numbers and heightened the antibody affinity at cellular levels. The higher the doses of LPS, the greater the effects. Concomitant injection of LPS in TNP-coupled homologous mouse red blood cells (MRBC) also elicited good anti-TNP PFC response and slightly heightened the affinity. Priming with LPS and SRBC together 7 days prior to immunization did not enhance the anti-TNP PFC response and it was difficult to alter the affinity. Preinjection with small amounts of TNP-MRBC or -rabbit red blood cells and LPS simultaneously did not induce any significant increase in anti-TNP PFC secondary response after reimmunization with TNP-SRBC, but obviously heightened the antibody affinity. Injection of LPS simultaneously with the secondary immunization was effective for both the anti-TNP PFC response and the alteration of antibody affinity. These results suggest that LPS affects the control mechanisms of anti-TNP antibody affinity via the non-thymus-derived helper cell function, and the adjuvant action and alteration of antibody affinity induced by LPS are regulated by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号