首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aqueous acetone extract from the fruit of Alpinia galanga (Zingiberaceae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells (IC50 = 7.3 μg/mL). Through bioassay-guided separation of the extract, a new 7-O-9′-linked neolignan, named galanganol D diacetate (1), was isolated along with 16 known compounds including 14 phenylpropanoids (215). The structure of 1, including its absolute stereochemistry in the C-7 position, was elucidated by means of extensive NMR analysis and total synthesis. Among the isolates, 1 (IC50 = 2.5 μM), 1′S-1′-acetoxychavicol acetate (2, 5.0 μM), and 1′S-1′-acetoxyeugenol acetate (3, 5.6 μM) exhibited a relatively potent inhibitory effect without notable cytotoxicity at effective concentrations. The following structural requirements were suggested to enhance the inhibitory activity of phenylpropanoids on melanogenesis: (i) compounds with 4-acetoxy group exhibit higher activity than those with 4-hydroxy group; (ii) 3-methoxy group dose not affect the activity; (iii) acetylation of the 1′-hydroxy moiety enhances the activity; and (iv) phenylpropanoid dimers with the 7-O-9′-linked neolignan skeleton exhibited higher activity than those with the corresponding monomer. Their respective enantiomers [1′ (IC50 = 1.9 μM) and 2′ (4.5 μM)] and racemic mixtures [(±)-1 (2.2 μM) and (±)-2 (4.4 μM)] were found to exhibit melanogenesis inhibitory activities equivalent to those of the naturally occurring optical active compounds (1 and 2). Furthermore, the active compounds 13 inhibited tyrosinase, tyrosine-related protein (TRP)-1, and TRP-2 mRNA expressions, which could be the mechanism of melanogenesis inhibitory activity.  相似文献   

2.
In the present article, we have synthesized a combinatorial library of 3,5-diaryl pyrazole derivatives using 8-(2-(hydroxymethyl)-1-methylpyrrolidin-3-yl)-5,7-dimethoxy-2-phenyl-4H-chromen-4-one (1) and hydrazine hydrate in absolute ethyl alcohol under the refluxed conditions. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. All the synthesized compounds were evaluated for their anticancer activity against five cell lines (breast cancer cell line, prostate cancer cell line, promyelocytic leukemia cell line, lung cancer cell line, colon cancer cell line) and anti-inflammatory activity against TNF-α and IL-6. Out of 15 compounds screened, 2a and 2d exhibited promising anticancer activity (61–73% at 10 μM concentration) against all selected cell lines and IL-6 inhibition (47% and 42% at 10 μM concentration) as in comparison to standard flavopiridol (72–87% inhibition at 0.5 μM) and dexamethasone (85% inhibition at 1 μM concentration), respectively. Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Out of 15, four 3,5-diaryl pyrazole derivatives exhibiting potent inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase. The IC50 values of compounds (2a, 2d, 2h and 2l) for monophenolase inhibition were determined to range between 1.5 and 30 μM. Compounds 2a, 2d, 2h and 2l also inhibited diphenolase significantly with IC50 values of 29.4, 21.5, 2.84 and 19.6 μM, respectively. All four 3,5-diaryl pyrazole derivatives were active as tyrosinase inhibitors (2a, 2d, 2h and 2l), and belonging to competitive inhibitors. Interestingly, they all manifested simple reversible slow-binding inhibition against diphenolase.  相似文献   

3.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

4.
Here a new class of hydroxy- or methoxy-substituted 5-benzylidene(thio)barbiturates were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that several compounds had more potent tyrosinase inhibitory activities than the widely used tyrosinase inhibitor kojic acid (IC50 = 18.25 μM). In particular, 3′,4′-dihydroxylated 1e was found to be the most potent inhibitor with IC50 value of 1.52 μM. The inhibition mechanism analysis revealed that the potential compounds 1e and 2e exhibited such inhibitory effects on tyrosinase by acting as the irreversible inhibitors. Structure–activity relationships’ (SARs) analysis also suggested that further development of such compounds might be of interest.  相似文献   

5.
A series of hydroxy substituted amino chalcone compounds have been synthesized. These compounds were then evaluated for their inhibitory activities on tyrosinase and melanogenesis in murine B16F10 melanoma cell lines. The structures of the compounds synthesized were confirmed by 1H NMR, 13C NMR, FTIR and HRMS. Two novel amino chalcone compounds exhibited higher tyrosinase inhibitory activities (IC50 values of 9.75 μM and 7.82 μM respectively) than the control kojic acid (IC50: 22.83 μM). Kinetic studies revealed them to act as competitive tyrosinase inhibitors with their Ki values of 4.82 μM and 1.89 μM respectively. Both the compounds inhibited melanin production and tyrosinase activity in B16 cells. Docking results confirm that the active inhibitors strongly interact with mushroom tyrosinase residues. This study suggests that the depigmenting effect of novel amino chalcone compounds might be attributable to inhibition of tyrosinase activity, suggesting amino chalcones to be a promising candidate for use as depigmentation agents or as anti-browning food additives.  相似文献   

6.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

7.
Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50 μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50 = 36.28 ± 0.72 μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor.  相似文献   

8.
We isolated 18 polyphenols with neuraminidase inhibitory activity from methanol extracts of the roots of Glycyrrhiza uralensis. These polyphenols consisted of four chalcones (14), nine flavonoids (513), four coumarins (1417), and one phenylbenzofuran (18). When we tested the effects of these individual compounds and analogs thereof on neuraminidase activation, we found that isoliquiritigenin (1, IC50 = 9.0 μM) and glycyrol (14, IC50 = 3.1 μM) had strong inhibitory activity. Structure–activity analysis showed that the furan rings of the polyphenols were essential for neuraminidase inhibitory activity, and that this activity was enhanced by the apioside group on the chalcone and flavanone backbone. In addition, the presence of a five-membered ring between C-4 and C-2′ in coumestan was critical for neuraminidase inhibition. All neuraminidase inhibitors screened were found to be reversible noncompetitive inhibitors.  相似文献   

9.
A series of novel 6-methoxy-2-(piperazin-1-yl)-4H-chromen-4-one and 5,7-dimethoxy-2-(piperazin-1-ylmethyl)-4H-chromen-4-one derivatives of biological interest were prepared and screened for their pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Among all the compound screened (5aj and 10kt), the compounds 5c, 5g, 5h, 10l, 10m, 10n and 10r found to have promising anti-inflammatory activity (up to 65–87% TNF-α and 70–93% IL-6 inhibitory activity) at concentration of 10 μM with reference to standard dexamethasone (71% TNF-a and 84% IL-6 inhibitory activities at 1 μM) while the compounds 5b, 5i, 5j, 10s and 10t found to be potent antimicrobial agent showing even 2 to 2.5-fold more potency than that of standard ciprofloxacin and miconazole at the same MIC value of 10 μg/mL.  相似文献   

10.
In an effort to develop novel potent antitubercular drugs, thirty-one oridonin derivatives were designed and prepared. All the compounds obtained were screened for their in vitro activities against Mycobacterium phlei, Mycobacterium smegmatis and Mycobacterium marinum. Among them, thirteen compounds showed significant inhibitory activity against M. phlei with MICs less than 2 μg/mL. Compounds 2k, 8d, 10c, 10d containing trans-cinnamic acid moiety were the most potent (MIC = 0.5 μg/mL), comparable to the well-known antitubercular drug streptomycin. The preliminary structure–activity relationships (SARs) were also analyzed.  相似文献   

11.
A series of 16 oxadiazole and triazolothiadiazole derivatives were designed, synthesized and evaluated as mushroom tyrosinase inhibitors. Five derivatives were found to display high inhibition on the tyrosinase activity ranging from 0.87 to 1.49 μM. Compound 5 exhibited highest tyrosinase inhibitory activity with an IC50 value of 0.87 ± 0.16 μM. The in silico protein–ligand docking using autodock 4.1 was successfully performed on compound 5 with significant binding energy value of ?5.58 kcal/mol. The docking results also showed that the tyrosinase inhibition might be due to the metal chelating effect by the presence of thione functionality in compounds 15. Further studies revealed that the presence of hydrophobic group such as cycloamine derivatives played a major role in the inhibition. Piperazine moiety in compound 5 appeared to be involved in an extensive hydrophobic contact and a 2.9 Å hydrogen bonding with residue Glu 182 in the active site.  相似文献   

12.
Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson’s disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 μg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50 = 500 nM), significantly. Another potent inhibitor 1 (IC50 = 2.9 μM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Kiapp = 1.48 nM, k3 = 0.0033 nM−1 min−1 and k4 = 0.0049 min−1. Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 μM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.  相似文献   

13.
From the MeOH extract of the leaves of Artocarpus altilis (Moraceae), three new aurones, altilisin H (1), I (2), and J (3), have been isolated together with two known flavonoids. Their structures were elucidated on the basis of spectroscopic data. All compounds possessed tyrosinase inhibitory activity with IC50 values less than 100 μM, while compounds 13 displayed potent α-glucosidase inhibitory activity with IC50 values ranging from 4.9 to 5.4 μM.  相似文献   

14.
Hybrid bisindole-thiosemicarbazides analogs (118) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7 μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0 μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2 ± 0.75, 21.4 ± 0.30 and 28.12 ± 0.25 μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds.  相似文献   

15.
Benzothiazole and its natural or synthetic derivatives have been used as precursors for several pharmacological agents for neuroprotective, anti-bacterial, and anti-allergic activities. The objecctive of the present study was to evaluate effects of benzothiazole analogs (compounds 1–26) for their immunomodulatory activities. Eight compounds (2, 4, 5, 810, 12, and 18) showed potent inhibitory activity on PHA-activated peripheral blood mononuclear cells (PBMCs) with IC50 ranging from 3.7 to 11.9 μM compared to that of the standard drug, prednisolone <1.5 μM. Some compounds (2, 4, 8, and 18) were also found to have potent inhibitory activities on the production of IL-2 on PHA/PMA-stimulated PBMCs with IC50 values ranging between <4.0 and 12.8 μM. The binding interaction of these compounds was performed through silico molecular docking. Compounds 2, 8, 9, and 10 significantly suppressed oxidative burst ROS production in phagocytes with IC50 values between <4.0 and 15.2 μM. The lipopolysaccharide (LPS)-induced nitrites in murine macrophages cell line J774 were found to be inhibited by compounds 4, 8, 9, and 18 at a concentration of 25 μg/mL by 56%, 91%, 58%, and 78%, respectively. Furthermore, compounds 5, 8, 12, and 18 showed significant (P < 0.05) suppressive activity on Th-2 cytokine, interleukin 4 (IL-4) with an IC50 range of <4.0 to 40.3 μM. Interestingly compound 4 has shown a selective inhibitory activity on IL-2 and T cell proliferation (naïve T cell proliferation stage) rather than on IL-4 cytokine, while compound 12 displayed an interference with T-cell proliferation and IL-4 generation. Moreover compound 8 and 18 exert non-selective inhibition on both IL-2 and IL-4 cytokines, indicating a better interference with stage leading to humoral immune response and hence possible application in autoimmune diseases.  相似文献   

16.
In this study, twenty 3,5-diaryl-4,5-dihydro-1H-pyrazole derivatives with hydroxyl(s) (1a1p, 2a2d) were synthesized and their inhibitory activity on mushroom tyrosinase was examined. The results showed that among these compounds, 1-(5-(3,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone 1d was found to be the most potent tyrosinase inhibitor with IC50 value of 0.301 μM. Kinetic study revealed that these compounds were competitive inhibitors of tyrosinase and their structure–activity relationships were investigated in this article.  相似文献   

17.
A new ellagitannin, agritannin (1), a new flavone glycoside, agriflavone (2), and another flavone glycoside with spectroscopic data reported for the first time, kaempferol-3-O-[(S)-3-hydroxy-3-methylglutaryl (1→6)]-β-d-glucoside (3), along with 16 known compounds were isolated from the aerial parts of Agrimonia pilosa Ledeb. These compounds were evaluated for PTP1B inhibitory activity. Among them, compounds 9 and 18 displayed potential inhibitory activity against PTP1B with IC50 values of 7.14 ± 1.75 and 7.73 ± 0.24 μM, respectively. In addition, compound 1 showed significant inhibitory effect with an IC50 value of 17.03 ± 0.09 μM. Furthermore, these compounds were tested in AChE inhibitory assays. Most of them were found to have moderate inhibitory effects, with IC50 values ranging from 60.20 ± 1.09 to 92.85 ± 1.12 μM. Except compounds 3, 8, and 18 were inactive.  相似文献   

18.
A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC50 value 0.00458 ± 0.00022 μM compared with the IC50 value of kojic acid is 16.84 ± 0.052 μM. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (−10.20 kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

19.
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (326) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (1021) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05 ± 1.17, 18.64 ± 1.83, and 17.23 ± 0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 36, 8, 18, 2023, and 2526 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1 ± 0.9 to 45.3 ± 1.6 μM and 14.4 ± 0.5 to 44.5 ± 1.2 μM, respectively.  相似文献   

20.
Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC50 value of 0.002 μM, followed by 1 (deguelin, IC50=0.008 μM), 9 (12a-hydroxyelliptone, IC50=0.010 μM) and 2 (α-toxicarol, IC50=0.013 μM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC50 value of 7.4 μM, followed by deguelin (1, IC50=27.4 μM). All compounds did not show any cytotoxicity at their IC50 values for NO inhibitory activity.Structure–activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a–C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a–C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号