首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mycoscience》2014,55(6):439-448
For preservation of 31 basidiomycete strains on perlite in cryovials we used five different perlite protocols to compare their applicability in laboratories with different equipment, namely a viability of the controlled freezing device or the electric deep-freezer and liquid nitrogen supply. The viability of the strains, macromorphological characteristics and the production of laccase were tested after 48 h, six months and one year of storage in the respective device. Our results indicated that the different response to the freezing/thawing process is an intrinsic feature of the respective strain. Nevertheless, the highest viability and preservation of laccase production in our tested strains was found when we used pre-freezing to −80 °C at a freezing rate of 1 °C/min in a programmable IceCube 1800 freezer or in freezing container Mr. Frosty before storage in liquid nitrogen or at ultra-low temperature freezer at −80 °C, respectively. The two abovementioned protocols enable all tested strains to survive three successive freezing/thawing cycles without substantial reduction of growth rate. The majority of the strains also do not lose laccase production. Our results showed that direct immersion of the strains into liquid nitrogen or placing them into −80 °C without pre-freezing is not suitable for basidiomycete cryopreservation.  相似文献   

2.
In this study, the response surface methodology was used to optimize the cryoprotective agent (skimmed milk powder, lactose and sucrose) formulation for enhancing the viability of Lactobacillus curvatus N19 during freeze-drying and storage stability of cells freeze-dried by using optimum formulation was evaluated. Our results showed that the most significant cryoprotective agent influencing the viability of L. curvatus N19 to freezing and freeze-drying was sucrose and skim milk, respectively. The optimal formulation of cryoprotective agents was 20 g/100 mL skim milk, 3.57 g/100 mL lactose and 10 g/100 mL sucrose. Using the optimum formulation during freeze-drying, the cell survival was found more than 98%. Under the optimal conditions, although only storage of the cells at 4 °C for 6 month retained the maximum stability (8.85 log cfu/g), the employed protectant matrix showed promising results at 25 °C (7.89 log cfu/g). The storage stability of cells under optimized conditions was predicted by accelerated storage test, which was demonstrated that the inactivation rate constant of the freeze-dried L. curvatus N19 powder was 9.74 × 10−6 1/d for 4 °C and 2.08 × 10−3 1/d for 25 °C. The loss of specific acidification activity after the storage at 4 and 25 °C was determined.  相似文献   

3.
The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S 50) of −2.5°C after cooling at 0.5°C min−1 and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S 50 being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S 50 is lowered by 0.55°C, compared to the control, after 4 h freezing at −1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.  相似文献   

4.
A study was conducted to establish a sustainable and effective manual freezing technique for cryopreservation of Bangladeshi ram semen. Three diluents and freezing techniques were tested, both as treatment combinations (diluent × freezing technique) and fixed effects (diluent or freezing technique) on post-thaw sperm motility (SM), viability (SV), plasma membrane integrity (SPMI) and acrosome integrity (SAI). Ten rams were selected, based on semen evaluation. Eight ejaculates were used for each treatment combination. Semen samples were diluted using a two-step protocol for home-made Tris-based egg yolk (20%, v/v) diluents: D1 (7% glycerol, v/v) and D2 (5% glycerol, v/v), and one-step for commercial diluent: D3 (Triladyl®, consists of bi-distilled water, glycerol, tris, citric acid, fructose, spectinomycin, lincomycin, tylosin and gentamycin) at 35 °C. Fraction-A (without glycerol) was added at 35 °C, and following cooling of sample to 5 °C (−0.30 °C/min), Fraction-B (with glycerol) was added. The diluted semen samples were aspirated into 0.25 ml French straws, sealed, and equilibrated at 5 °C for 2 h. The straws were frozen in liquid nitrogen (LN) vapour, in a Styrofoam box. The freezing techniques were; One-step (F1): at −15.26 °C/min from +5 °C to −140 °C; Two-step (F2): at −11.33 °C/min from +5 °C to −80 °C, and −30 °C/min from −80 °C-140 °C; and Three-step (F3): at −11.33 °C/min from +5 °C to −80 °C, at −26.66 °C/min from to −80 °C to −120 °C, and at −13.33 °C/min from −120 °C to −140 °C. Two semen straws from each batch were evaluated before and after freezing. The group F3D3 exhibited significantly higher (p < 0.05) post-thaw SM 63.1 ± 2.5%, SV 79.0 ± 2.1% and SPMI 72.9 ± 1.7%, whereas SAI 72.9 ± 1.7% was significantly higher (p < 0.05) in group F3D2. The freezing technique F2 and F3 had significantly higher (p < 0.05) post-thaw sperm values compared to F1. The post-thaw SM and SV were above 50% and 65% with the freezing technique F2 and F3 but differed non-significant. The SPMI 67.6 ± 2.0% and SAI 76.1 ± 1.4% were significantly higher (p < 0.05) with F3. Likewise, the diluent D2 and D3 had significantly higher (p < 0.05) post-thaw sperm values compared to D1. The post-thaw SM, SV and SPMI were above 50%, 65% and 55% with the diluents D2 and D3 but differed non-significant. The SAI 76.1 ± 1.1% was significantly higher (p < 0.05) with D3. We concluded that the use of a simple home-made Tris-based diluent containing 20% (v/v) egg yolk and 5% glycerol (v/v), two-step dilution and a three-step freezing technique is a sustainable and effective method for freezing ram semen. For further validation, the fertility of ewes artificially inseminated with the frozen semen will be observed.  相似文献   

5.
Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10°C) and in the presence of ethanol (2–18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30–40°C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2–C8) compared to long-chained esters (C10–C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.  相似文献   

6.
The preservation of Agaricus blazei is generally done by mycelial subculturing, but this technique may cause genetic degenerations. Despite this, there is not an efficient protocol established to preserve this fungus and cryopreservation could be an alternative. This study aimed to evaluate two freezing protocols for cryopreservation at −80°C of A. blazei strains. Five fungus strains grown on rice grains with husk and were transferred to glycerol (10%) in cryovials. Next, the cryovials were submitted to two freezing temperature protocols: (1) cryopreservation starting at 25°C, then at 8°C for 30 min and kept at −80°C; (2) cryopreservation starting at 25°C, then 8°C for 30 min, −196°C for 15 min and kept at −80°C. After 1 year of cryopreservation, the cryovials were thawed in a water bath at 30°C for 15 min and transferred to malt extract agar medium. It was concluded that the one-year cryopreservation process of A. blazei, grown on rice grains and cryopreserved at −80°C in glycerol 10%, is viable. The slow freezing, from 8 to −80°C, is effective whereas the fast freezing, from 8 to −196°C and then to −80°C, is ineffective. The different genetic characteristics among the strains of this fungus do not interfere in the cryopreservation process.  相似文献   

7.
Strong evidence suggests that cryoprotectant accumulation during pre-cold acclimation protects cells against freezing injuries caused by cellular dehydration. In this study, the concentrations of trehalose and glycerol were measured in Meloidogyne incognita and it was found that both cryoprotectants were significantly accumulated in second-stage juveniles (J2) of M. incognita after acclimation at 4°C. However, compared with non-acclimated samples, only a higher level of trehalose was induced in the egg masses of M. incognita in response to cold treatment. Further characterizations indicated that pre-cold acclimation efficiently accelerated the speed of larvae hatching from egg masses that were subjected to freezing at −1°C. In addition, the survival rate and pathogenicity of M. incognita J2 that had been acclimated prior to freezing were significantly enhanced when compared with non-acclimated J2 individuals. As far as we know, this is the first time that this phenomenon has been reported in M. incognita.  相似文献   

8.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

9.
A simple effective and compact freeze-drying method involving skim milk 20% (w/v) and glutamate 5% or meso-inositol 5% or honey 10% or raffinose 5% for the long-term preservation of bacteria is described. As a case example more than 160 strains representing 36 species of nitrogen-fixing bacteria, 11 species of chemolithorutotrophic bacteria and five species of Aquaspirillum were successfully preserved. All tested strains proved viable and showed about 10–100% survival after freeze-drying and during 2–3 years of storage at +9°C. In such lyophilized cultures no loss in plasmids or other desirable characters was observed. The method is also suitable for the preservation of other fragile and difficult microorganisms as several other strains including bacteria with introduced plasmids could equally survive well and retained plasmids after lyophilization with this method.  相似文献   

10.
The present study reports the temperature tolerance, estimated using dynamic and static methodologies, and preferred temperature range, based on oxygen consumption rate (OCR), of juvenile meagre (Argyrosomus regius) (Asso, 1801) (3.4±0.9 g) after 30 days of acclimation at 18, 22, 26 and 30 °C. Meagre has dynamic and static thermal tolerance zones of 551 °C2 and 460 °C2, respectively and is a low resistance fish species, with a resistance zone area of 87 °C2. The OCR of juvenile meagre at the above acclimation temperatures was 370, 410, 618 and 642 mg h−1 kg1, respectively, and is significantly different (P<0.0001, n=20). The fact that OCR increases by rising temperatures and gradually decreases after 26 °C indicates that the preferred temperature range of juvenile meagre is between 26 and 30 °C. Our study suggests that meagre is unable to respond to low and high temperature variation in aquaculture facilities or its natural habitats.  相似文献   

11.
《Cryobiology》1985,22(2):191-195
The relationship between freezing and heat tolerance was investigated with suspension-cultured pear (Pear cammunis cv. Bartlett) cells. This culture showed considerable capacity for both cold and heat acclimation. Growth at 2 °C (Cold acclimation) and at 30 °C (heat acclimation) both increased the freezing tolerance [measured via triphenyltetrazolium chloride (TTC) reduction]of pear cells. However, heat acclimation induced by heat shock treatment did not significantly effect freezing tolerance. Although growth at 30 °C increased freezing tolerance (relative to 22 °C-grown controls), growth at 2 °C (cold acclimation) decreased heat tolerance substantially. Thus, the only similarity detected between cold and heat acclimation was that both processes conferred freezing resistance to TTC-reducing system(s) in pear cells. The pear suspension culture will be a useful tool to further investigate cold acclimation via comparisons between heat and freezing acclimation and injury.  相似文献   

12.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   

13.
《Cryobiology》2016,73(3):210-215
Several methods are currently available for selection when conducting sperm cryopreservation, however, these methods might cause different degrees of damage on sperm DNA. The aim of the this study is to compare the effects of storage at −80 °C (in ultra-low temperature refrigerator) and at −196 °C (in liquid nitrogen) on sperm DNA damage, thus to provide a reference for choosing the right method according to different aims. We randomly collected 28 semen samples from college students of Chongqing city. The samples stored at −80 °C were neat semen samples and the samples stored at −196 °C were mixed with additional cryoprotectants. Each sample was subjected to two freezing-thawing cycles, and the sperm DNA damage levels of fresh and thawed samples were measured by single cell gel electrophoresis (SCGE) and sperm chromatin structure assay (SCSA). Both SCGE and SCSA assays showed cryopreservation induced significant damage to sperm DNA. However, storage at −196 °C lead to more severe damage to sperm DNA than storage at −80 °C measured by SCSA. Sperm DNA damage increased simultaneously with the higher frequency of freezing-thawing cycles. We concluded that storage of neat semen samples at −80 °C had milder damage to sperm DNA than storage at −196 °C mixed with cryoprotectants. To avoid additional sperm DNA damage, repeated freezing and thawing should be prevented.  相似文献   

14.
Fourteen wild-type baking strains of Saccharomyces cerevisiae were grown in batch culture to true stationary phase (exogenous carbon source exhausted) and tested for their trehalose content and their tolerance to heat (52°C for 4.5 min), ethanol (20% v/v for 30 min), H2O2 (0.3 M for 60 min), rapid freezing (−196°C for 20 min, cooling rate 200°C min−1), slow freezing (−20°C for 24 h, cooling rate 3°C min−1), salt (growth in 1.5 M NaCl agar) or acetic acid (growth in 0.4% w/v acetic acid agar) stresses. Stress tolerance among the strains was highly variable and up to 1000-fold differences existed between strains for some types of stress. Compared with previously published reports, all strains were tolerant to H2O2 stress. Correlation analysis of stress tolerance results demonstrated relationships between tolerance to H2O2 and tolerance to all stresses except ethanol. This may imply that oxidative processes are associated with a wide variety of cellular stresses and also indicate that the general robustness associated with industrial yeast may be a result of their oxidative stress tolerance. In addition, H2O2 tolerance might be a suitable marker for the general assessment of stress tolerance in yeast strains. Trehalose content failed to correlate with tolerance to any stress except acetic acid. This may indicate that the contribution of trehalose to tolerance to other stresses is either small or inconsistent and that trehalose may not be used as a general predictor of stress tolerance in true stationary phase yeast. Received 10 October 1995/ Accepted in revised form 10 September 1996  相似文献   

15.
We investigated the metabolic rate of the Tasmanian marsupial, the eastern barred bandicoot, Perameles gunnii, before and after acclimation to cold temperature (5 °C) for a 2-week period. Although body temperature did not change significantly, we observed a significant increase in the metabolic rate (MR) when measured at 5 °C before and after cold acclimation. Nor-epinephrine had a significant effect on the metabolic rate when measured in the thermoneutral zone and when measured at 5 °C after cold acclimation; however, there was no significant increase when measured at 5 °C before cold acclimation. Nor-epinephrine also resulted in a small but significant decrease in body temperature. Electromyography (EMG) measurements were obtained before and after cold acclimation during shivering. Shivering decreased after two weeks of cold exposure indicating that the bandicoot had acclimated to that temperature. Nor-epinephrine (NE) significantly reduced shivering before but not after cold acclimation. The metabolic rate and shivering decreased in the adult eastern barred bandicoot after acclimation at 5 °C and nor-epinephrine had similar effects to cold acclimation. Our findings of minor changes in thermal conductance suggest that insulation differences were unlikely explanations for our results. These experiments indicate that this marsupial is able to increase its heat production by non-shivering thermogenesis.  相似文献   

16.
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0–12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.  相似文献   

17.
The thermoregulatory behavior of the giant keyhole limpet Megathura crenulata was determined in a horizontal thermal gradient during the day at 18.9 °C and 18.3 °C for the night. The final preferendum determined for giant keyhole limpets was of 18.6±1.2 °C.Limpets' displacement velocity was 10.0±3.9 cm h−1 during the light phase and 8.4±1.6 cm h−1 during the dark phase. The thermotolerance (measured as CTMax at 50%) was determined in a keyhole limpet in three acclimation temperatures 17, 20, and 23 °C. Limpets were subjected to water increasing temperatures at a rate of 1 °C every 30 min, until they detached from the substrate. The critical thermal maximum at 50% was 27.2, 27.9 and 28.3 °C respectively.  相似文献   

18.
Schizopygopsis younghusbandi is an endemic fish of Tibet characterized by slow growth. Artificial stock enhancement was applied to rebuild the natural population of S. younghusbandi in recent years. However, the optimal growth temperature and thermal tolerance of S. younghusbandi has not been studied, which restricts the production of S. younghusbandi fingerling for stock enhancement. The purpose of this paper is to determine the growth, critical thermal maximum (CTMax), lethal thermal maximum (LTMax) and acclimation response ratio (ARR) of S. younghusbandi juveniles (body weight 5.7 ± 1.2 g) at three acclimation temperature levels (10, 15, 20°C). The results showed that acclimation temperature significantly affected the growth, CTMax, LTMax and ARR of the experimental fish. Largest final weight (7.5 ± 2.3 g) was recorded in 15°C group. At a heating rate of 1°C/30 min, CTMax ranged from 30.98 to 32.01°C and LTMax ranged from 31.76 to 32.31°C in the three acclimation temperatures. Schizopygopsis younghusbandi had lower ARR value (0.097) than most other fish species. Low ARR value indicates that S. younghusbandi may have narrower thermal tolerance range and weaker acclimation ability to global warming. For successful aquaculture of S. younghusbandi juveniles, temperature should be maintained around 15°C.  相似文献   

19.
The relationship between total soluble seminal root proteins induced at cold acclimation and freezing tolerance in tetraploid wild wheat Aegilops L. (Ae. biuncialis, Ae. cylindrica) and cultivated wheat Triticum turgitum L. (Firat-93, Harran-95) was investigated. Cold acclimation was performed at 0 °C for 7 days. Freezing tolerance was determined with survived roots after freezing treatments at −5 and/or −7 °C for 3, 6, 12 and 24 h. At −5°C, all tetraploid genotypes showed over 60% tolerance for 3 h. This effect was also present in wild wheat for 6 h, but was decreased in cultivated wheat to 30–35% tolerance for 6 h. Only Ae. biuncialis was able to show 52% tolerance just for 3 h freezing period at −7 °C. However, all the genotypes were not survived at −7 °C, for 6, 12 and 24 h. Cold acclimation induced greater amounts of new soluble seminal root proteins in tolerant Ae. biuncialis (29–104 kDa, pI 5.4–7.4) than in sensitive Harran-95 (29–66 kDa, pI 6.1–8.3). Synthesis and accumulation of these proteins may be related to degree of freezing tolerance of these genotypes.  相似文献   

20.
Temperature variation affects the growth, maturation and distribution of fish species due to increasing constraints on physiological functions therefore, the aim of the present study is to evaluate effect of temperature on thermal tolerance and standard metabolic rate (SMR) of gilthead seabream (Sparus aurata). For this purpose, tolerable temperature ranges of juvenile gilthead seabream acclimated at 15, 20, 25, and 30 °C for 30 days were estimated using dynamic and static thermal methodologies. The SMRs of the fish were also determined based on oxygen consumption rate (OCR). The dynamic and static thermal tolerance zones of gilthead seabream were calculated as 737 °C2 and 500 °C2, respectively, with a resistance zone area of 155.5 °C2. The SMR of the fish at the above acclimation temperatures (AT) was determined as 138, 257, 510, and 797 mg O2 h−1 kg−1, respectively and were significantly different (P < 0.01, n = 10). The temperature quotient (Q10) in relation to the SMR of the fish was calculated as 3.45, 3.91, and 2.44 for acclimation temperature ranges of 15–20, 20–25, and 25–30 °C, respectively. The fact that the SMR increased with rising temperatures and then decreased gradually after 25 °C indicates that the temperature preference of juvenile gilthead seabream lies between 25 and 30 °C. This study shows that gilthead seabream tolerates a relatively narrow temperature range, and consequently, a low capacity for acclimatisation to survive in aquatic systems characterised by temperature variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号