首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process – carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) – are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.  相似文献   

2.
Nitrosodiethylamine (NDEA) is a potent carcinogen widely existing in the environment. Our previous study has demonstrated that garlic oil (GO) could prevent NDEA-induced hepatocarcinogenesis in rats, but the underlying mechanisms are not fully understood. It has been well documented that the metabolic activation may play important roles in NDEA-induced hepatocarcinogenesis. Therefore, we designed the current study to explore the potential mechanisms by investigating the changes of hepatic phase Ⅰ enzymes (including cytochrome P450 enzyme (CYP) 2E1, CYP1A2 and CYP1A1) and phase Ⅱ enzymes (including glutathione S transferases (GSTs) and UDP- Glucuronosyltransferases (UGTs)) by using enzymatic methods, real-time PCR, and western blotting analysis. We found that NDEA treatment resulted in significant decreases of the activities of CYP2E1, CYP1A2, GST alpha, GST mu, UGTs and increases of the activities of CYP1A1 and GST pi. Furthermore, the mRNA and protein levels of CYP2E1, CYP1A2, GST alpha, GST mu and UGT1A6 in the liver of NDEA-treated rats were significantly decreased compared with those of the control group rats, while the mRNA and protein levels of CYP1A1 and GST pi were dramatically increased. Interestingly, all these adverse effects induced by NDEA were simultaneously and significantly suppressed by GO co-treatment. These data suggest that the protective effects of GO against NDEA-induced hepatocarcinogenesis might be, at least partially, attributed to the modulation of phase I and phase II enzymes.  相似文献   

3.
Ueng YF  Ko HC  Chen CF  Wang JJ  Chen KT 《Life sciences》2002,71(11):1267-1277
Evodia rutaecarpa is a traditional Chinese medicine used for the treatment of gastrointestinal disorders and headache. To assess the possible drug interactions, effects of methanol and aqueous extracts of E. rutaecarpa on drug-metabolizing enzymes, cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in C57BL/6J mice. Treatment of mice with methanol extract by gastrogavage caused a dose-dependent increase of liver microsomal 7-ethoxyresorufin O-deethylation (EROD) activity. In liver, methanol extract at 2 g/kg caused 47%, 7-, 8-, 4-fold, 81% and 26% increases of benzo(a)pyrene hydroxylation (AHH), EROD, 7-methoxyresorufin O-demethylation (MROD), 7-ethoxycoumarin O-deethylation (ECOD), benzphetamine N-demethylation, and N-nitrosodimethylamine N-demethylation activities, respectively. Aqueous extract at 2 g/kg caused 68%, 2-fold, and 83% increases of EROD, MROD, and ECOD activities, respectively. For conjugation activities, methanol extract elevated UGT and GST activities. Aqueous extract elevated UGT activity without affecting GST activity. Immunoblot analyses showed that methanol extract increased the levels of CYP1A1, CYP1A2, CYP2B-, and GSTYb-immunoreactive proteins. Aqueous extract increased CYP1A2 protein level. In kidney, both extracts had no effects on AHH, ECOD, UGT, and GST activities. Three major bioactive alkaloids rutaecarpine, evodiamine, and dehydroevodiamine were present in both extracts. These alkaloids at 25 mg/kg increased hepatic EROD activity. These results demonstrated that E. rutaecarpa methanol and aqueous extracts could affect drug-metabolizing enzyme activities. Rutaecarpine, evodiamine, and dehydroevodiamine contributed at least in part to the increase of hepatic EROD activity by extracts of E. rutaecarpa. Thus, caution should be paid to the possible drug interactions of E. rutaecarpa and CYP substrates.  相似文献   

4.
5.
Histamine is a biogenic amine with multiple physiological functions. Its importance in allergic inflammation is well characterized; moreover, it plays a role in the regulation of gastric acid production, various hypothalamic functions, such as food uptake, and enhancing TH2 balance during immune responses. Using histidine decarboxylase gene targeted (HDC(-/-)) BALB/c mice, we studied the effect of the absence of histamine on four cytochrome p450 enzyme activities. Their selective substrates were measured: ethoxyresorufin O-dealkylase activity of CYP1A, pentoxyresorufin O-dealkylase activity of CYP2B, chlorzoxazone 6-hydroxylase activity of CYP2E1 and ethylmorphine N-demethylase activity of CYP3A.The results indicate a significant elevation of CYP2E1 and CYP3A activities, however, no change in CYP1A and CYP2B activities was seen in HDC targeted mice compared to wild type controls with identical genetic backgrounds.  相似文献   

6.
The influence of both single and concurrent administration of phenobarbital and clofibrate on hepatomegaly, cytochrome P450-depen-dent mixed function oxidase activities, and peroxisome proliferation in male rat liver have been studied. Both xenobiotics separately increase the liver :body weight ratio and their combined administration results in greater hepatomegaly than either compound alone. Both compounds induce NADPH-cytochrome c(P450) reductase activity and laurate ω- and ω-1-hydroxylase activities, but only phenobarbital induces pentoxyresorufin-O-de-alkylase. None of the drug treatments induced microsomal cytochrome b5. Phenobarbital did not cause peroxisome proliferation and inhibited the corresponding clofibrate-dependent proliferation. Taken collectively, our studies have demonstrated that concomitant treatment with phenobarbital and clofibrate are largely permissive with respect to the hepatic mixed function oxidase system but have opposing effects on the phenomenon of peroxisome proliferation in the same tissue.  相似文献   

7.
Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.  相似文献   

8.
We have expanded previous observations on olfactory metabolic enzymes by examining the content of various metabolic enzymes in the olfactory mucosa of the male Long-Evans rat at different ages. Age-related changes in metabolic enzyme content may be related to changes in susceptibility to toxicants with age and may also contribute to altered odorant perception in the elderly. While some enzymes did not vary over the age range examined, decreases in the microsomal content of other enzymes were observed. While mRNA for acetyltransferase enzymes has previously been described in olfactory mucosa, the markedly higher activity of olfactory acetyltransferases compared to liver had not previously been described. Acetyltransferases are important in the metabolism of drugs and toxicants that are aromatic amine derivatives and may contribute to the bioactivation of rodent olfactory mucosal carcinogens such as 2,6-dimethylaniline and alachlor. These studies show that the olfactory mucosa varies in its metabolic capacity with age, and characterize another class of metabolic enzymes in the olfactory mucosa, both of which may impact significantly on responses to toxicants and therapeutic agents in the nasal cavity.  相似文献   

9.
10.
11.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

12.
6种植物次生物质对斜纹夜蛾解毒酶活性的影响   总被引:2,自引:0,他引:2  
草食性昆虫取食植物时遇到宿主植物中大量次生物质的化学防御,研究昆虫适应植物毒素的反防御策略具有重要的科学意义。分别添加0.01%肉桂酸、0.01%水杨酸、0.01%花椒毒素、0.02%槲皮素、0.05%黄酮和0.1%香豆素等6种植物次生物质的人工饲料饲养斜纹夜蛾(Spodoptera litura)五龄幼虫48 h后,测定斜纹夜蛾幼虫中肠和脂肪体中谷胱甘肽S-转移酶(GSTs)、羧酸酯酶(CarE)、P450的酶含量及头部乙酰胆碱酯酶(AChE)的活性,利用半定量RT-PCR检测中肠和脂肪体中CYP4M14和CYP4S9的基因表达水平。结果表明:取食肉桂酸和香豆素后,斜纹夜蛾中肠中CarE的酶活性分别提高了1.67和1.37倍,取食6种次生物质均能显著提高斜纹夜蛾脂肪体中GSTs酶活性。取食肉桂酸和香豆素48 h后,脂肪体中P450酶含量比对照增加2.93和14.50倍。取食肉桂酸、花椒毒素、槲皮素和香豆素后,斜纹夜蛾头部AchE酶活性与对照相比提高了1.53、1.80、2.36和1.56倍。6种次生物质均可诱导脂肪体中CYP4M14基因表达,槲皮素、肉桂酸和香豆素强烈诱导CYP4S9在脂肪体中表达。表明,斜纹夜蛾具有利用植物次生物质诱导其解毒酶的能力,进而提高其对毒素的抗性。  相似文献   

13.
The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.  相似文献   

14.
Five insecticide synergists, all of which were either methylenedioxyphenyl compounds or analogs, were compared as to their effect on cytochrome P450 monooxygenase induction caused by an allelochemical in fall armyworm larvae. Feeding the synergists (piperonyl butoxide, safrole, isosafrole, MGK 264, and myristicin) individually to the larvae caused decreases in the microsomal aldrin epoxidase activities ranging from 38% to 74% when compared with controls. Feeding indole-3-carbinol resulted in a 4-fold increase in the microsomal epoxidase activity. However, cotreatment of any of the synergists and the inducer completely eliminated the induction. Sixth instar larvae were more inducible than second instar larvae with respect to microsomal epoxidase and glutathione transferase in the fall armyworm. Enzyme inducibility varied widely among the seven phytophagous Lepidoptera examined. When indole-3-carbinol was used as an inducer of microsomal epoxidase, the extent of inducibility of the enzyme was fall armyworm > velvetbean caterpillar > corn earworm > beet armyworm > tobacco budworm > cabbage looper > diamondback moth. When indole-3-acetonitrile was used as an inducer, the inducibility of glutathione transferase was fall armyworm > beet armyworm > corn earworm > cabbage looper > velvetbean caterpillar > tobacco budworm > diamondback moth. Inducibility of five microsomal oxidase systems also varied considerably in the corn earworm, indicating the multiplicity of cytochrome P450 in this species. Microsomal epoxidase and glutathione transferase were induced by cruciferous host plants such as cabbage and their allelochemicals in diamondback moth larve. © 1993 Wiley-Liss, Inc.  相似文献   

15.
16.
细胞色素P450酶的结构、功能与应用研究进展   总被引:2,自引:1,他引:2  
细胞色素P450 (cytochrome P450,CYP)酶是广泛存在于微生物、动植物及人体中与膜结合的血红蛋白类酶,具有氧化、环氧化、羟化、去甲基化等多种生物催化活性。CYP酶在药物、类固醇、脂溶性维生素和许多其他类型化学物质的代谢中具有重要作用,其在异源物质的解毒、药物相互作用和内分泌功能等领域的研究是热点问题。本综述对CYP的结构、功能、临床应用与开发前景进行了概述,并对其最新的研究现状和发展前景进行探讨。  相似文献   

17.
18.
Dutheil F  Beaune P  Loriot MA 《Biochimie》2008,90(3):426-436
The metabolism of xenobiotics in human brain constitutes a field of recent intensive research in relation to the potential implications in the pharmacological effect of drugs acting on the central nervous system. Cytochrome P450 enzymes (CYPs) play a crucial role in these metabolic pathways and the existence of functional CYP monooxygenases in brain is now well established. These enzymes are preferentially localized in the neuronal cells within the microsomal fraction and the inner membrane of mitochondria. Although low, the metabolism in situ could influence individual response to xenobiotics or produce reactive, toxic metabolites causing irreversible damage in the neuronal cells. The abundant presence of CYPs in selective cell populations within different regions of the brain has also suggested a role for these enzymes in brain physiology thus not restricted to xenobiotic-induced neurotoxicity. For instance, CYPs participate in the regulation of neurotransmitters and steroids and brain maintenance of cholesterol homeostasis. Recent advances support an additional role for these enzymes in the pathogenesis of psychiatric and neurodegenerative disorders such as depression, schizophrenia, and Alzheimer's and Parkinson's diseases. The characterization of brain CYP isoforms and their localization, the identification of their substrates and metabolic end-products will allow better understanding of the role of these enzymes in brain physiology, development and diseases.  相似文献   

19.
Studies of host suitability and preferences of Trichogramma cordubensis Vargas and Cabello (Hymenoptera: Trichogrammatidae) were performed with eggs of six Lepidoptera (Noctuidae) species: Thysanoplusia orichalcea Fabricius, Peridroma saucia (Hübner), Xestia c-nigrum L., Phlogophora meticulosa (L.), Noctua pronuba (L.), and N. atlantica (Warren). Host suitability was studied by analysing separately the effects of the attacked host species and the influence of the rearing host species on different biological parameters of T. cordubensis. Host preference was analysed by offering eggs of two host species simultaneously to a single female wasp without previous oviposition experience (dual-choice tests). Results show that P. saucia, followed by P. meticulosa were the least suitable hosts for T. cordubensis, since on these species the preimaginal development of the parasitoids was significantly longer and, the number of parasitized eggs as well the number of offspring per female were significantly lower. Contrarily, T. cordubensis parasitized at a higher rate the eggs of the endemic non-target species, N. atlantica. Dual choice tests showed that the option of the first host to be accepted by the wasp was random; however, the mean number of parasitized eggs differed significantly when two host species were offered simultaneously to T. cordubensis, always being the host species with heavier eggs the most parasitized.  相似文献   

20.
Molecular characterization of the insecticide resistance has become a hot research topic ever since the first disease transmitting arthropod (Anopheles gambiae) genome sequence has unveiled in 2002. A recent publication of the Culex quinquefasciatus genome sequence has opened up new opportunities for molecular and comparative genomic analysis of multiple mosquito genomes to characterize the insecticide resistance. Here, we utilized a whole genome sequence of Cx. quinquefasciatus to identify putatively active members of the detoxification supergene families, namely cytochrome P450s (P450s), glutathione-S-transferases (GSTs), and choline/carboxylesterases (CCEs). The Culex genome analysis revealed 166 P450s, 40 GSTs, and 62 CCEs. Further, the comparative genomic analysis shows that these numbers are considerably higher than the other dipteran mosquitoes. These observed speciesspecific expansions of the detoxification super gene family members endorse the popular understanding of the involvement of these gene families in protecting the organism against multitudinous classes of toxic substances during its complex (aquatic and terrestrial) life cycle. Thus, the generated data set may provide an initial point to start with to characterize the insecticide resistance at a molecular level which could then lead the development of an easy to use molecular marker to monitor the incipient insecticide resistance in field environs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号