首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
Progesterone (P4) is involved in the regulation of essential reproductive functions affecting the target cells through both nuclear progesterone receptors (PGRs) and membrane progesterone receptors. The aim of this study was to determine the mRNA and protein expression for PGRMC1, PGRMC2, SERBP1 and PGR within the bovine endometrium during the estrous cycle and the first trimester of pregnancy. There were no changes in PGRMC1 and PGRMC2 mRNA and protein expression during the estrous cycle, however, mRNA levels of PGRMC1 and PGRMC2 were increased (P < 0.001) in pregnant animals. SERBP1 mRNA expression was increased (P < 0.05), while the level of this protein was decreased (P < 0.05) on days 11–16 of the estrous cycle. The expression of PGR mRNA was higher (P < 0.01) on days 17–20 compared to days 6–10 and 11–16 of the estrous cycle and pregnancy. PGR-A and PGR-B protein levels were elevated on days 1–5 and 17–20 of the estrous cycle as compared to other stages of the cycle and during pregnancy. In conclusion, our results indicate that P4 may influence endometrial cells through both genomic and nongenomic way. This mechanism may contribute to the regulation of the estrous cycle and provide protection during pregnancy.  相似文献   

2.
The aim of this study was to evaluate the mRNA and protein expression and the localization of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, and the PGRMC1 partner serpine mRNA binding protein 1 (SERBP1) in the bovine CL on Days 2 to 5, 6 to 10, 11 to 16, and 17 to 20 of the estrous cycle as well as during Weeks 3 to 5, 6 to 8, and 9 to 12 of pregnancy (n = 5–6 per each period). The highest levels of PGRMC1 and PGRMC2 mRNA expression were found on Days 6 to 16 (P < 0.05) and 11 to 16, respectively, of the estrous cycle and during pregnancy (P < 0.001). The level of PGRMC1 protein was the highest (P < 0.05) on Days 11 to 16 of the estrous cycle compared with the other stages of the estrous cycle and pregnancy, whereas PGRMC2 protein expression (P < 0.001) was the highest on Days 17 to 20 and also during pregnancy. The mRNA expression of SERBP1 was increased (P < 0.05) on Days 11 to 16, whereas the level of its protein product was decreased (P < 0.05) on Days 6 to 10 of the estrous cycle and was at its lowest (P < 0.001) on Days 17 to 20. In pregnant cows, the patterns of SERBP1 mRNA and protein expression remained constant and were comparable with those observed during the estrous cycle. Progesterone receptor membrane component 1 and PGRMC2 localized to both large and small luteal cells, whereas SERBP1 was observed mainly in small luteal cells and much less frequently in large luteal cells. All proteins were also localized in the endothelial cells of blood vessels. The data obtained indicate the variable expression of PGRMC1, PGRMC2, and SERBP1 mRNA and protein in the bovine CL and suggest that progesterone may regulate CL function via its membrane receptors during both the estrous cycle and pregnancy.  相似文献   

3.
《Theriogenology》2016,85(9):1636-1643
Tissue inhibitors of metalloproteinases (TIMPs) are associated with several reproductive processes, such as mammalian follicular growth, ovulation, CL formation, and embryonic development. However, the expression and function of TIMPs in goat oviducts remain unclear. This work aimed to identify TIMP1 and TIMP3 expression in the goat oviduct during the estrous cycle via immunohistochemistry, real-time polymerase chain reaction (PCR), and functional studies in cultured goat oviductal epithelial cells. Real-time PCR results demonstrated that TIMP1 and TIMP3 messenger RNAs were expressed in all goat oviductal regions at all stages of the estrous cycle. TIMP1 and TIMP3 proteins were also highly expressed in oviductal epithelial cells with very limited expression in other cell types. Oviductal epithelial cells were treated in vitro with various estradiol concentrations (1–100 nM) for 24 hours. The findings showed that TIMP1 expression increased up to 20 nM but then gradually decreased, whereas no significant effects existed among TIMP3 messenger RNA levels. Time-course studies indicated that estradiol significantly increased TIMP1 expression in a time-dependent manner from 8 hours to 24 hours. By contrast, TIMP3 expression was transiently induced in oviductal epithelial cells at 2 and 4 hours after estradiol treatment. Furthermore, treatment with TIMP1 functionally increased the viability of cultured oviductal epithelial cells. Overall, the results suggested that the differential regulation and function between TIMP1 and TIMP3 might be associated with their unique roles in fertilization and early embryonic development.  相似文献   

4.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

5.
6.
Gene expression and immunohistochemical localization of epidermal growth factor (EGF), transforming growth factor-α (TGF-α), and epidermal growth factor receptor (EGF-R) were compared between the endometrium of bitches (Canis familiaris) with pyometra accompanied by cystic endometrial hyperplasia (CEH) and that of healthy bitches at similar stages of the estrous cycle. In normal bitches, endometrial TGF-α mRNA levels were highest at proestrus and gradually decreased as the cycle progressed to anestrus. Epidermal growth factor receptor mRNA levels were not significantly affected by the stage of the estrous cycle. Epidermal growth factor mRNA levels were higher at Day 35 of diestrus than at other stages of the estrous cycle (P < 0.05). In bitches with pyometra, endometrial TGF-α and EGF-R mRNA levels did not differ significantly from those at diestrus in normal bitches, but EGF mRNA levels were lower than those at Day 35 of diestrus in normal bitches (P < 0.05). In normal bitches, positive immunohistochemical staining for TGF-α, EGF, and EGF-R was mainly present in the glandular and luminal epithelial cells of the endometrium. In contrast, in bitches with pyometra, immunoreactivity for EGF was clearly present in endometrial stromal cells. Inflammatory cells that had infiltrated the endometrial stroma stained strongly for TGF-α and EGF-R. Luminal and glandular epithelial cells also stained positive for EGF-R. In conclusion, expression of TGF-α by inflammatory cells and a low level of expression and differential localization of EGF may be involved in aberrant growth of endometrial glands and development of CEH.  相似文献   

7.
Cytokines produced by the porcine uterus and embryos may be involved in the regulation of endometrial prostaglandin synthesis, metabolism, and release. We studied the effect of tumor necrosis factor α (TNFα), interleukin 1β (IL1β) and interleukin 6 (IL6) on: 1) endometrial release of prostaglandin F2α (PGF2α), 2) expression of the terminal enzyme of PGF2α synthesis - PGF synthase mRNA (PGFS mRNA), 3) secretion of PGF2α metabolite - 13,14-dihydro-15-keto PGF2α (PGFM) by the endometrium and 4) presence and activity of endometrial NAD-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). The effects of cytokines were determined on days 10-11 and days 12-13, e.g., before and during maternal recognition of pregnancy, and on days 15-16, e.g., during the peri-implantation period and compared with its effect in cyclic gilts on corresponding days of the estrous cycle. TNFα did not affect endometrial release of PGF2α in pregnant and cyclic pigs. IL1β enhanced endometrial PGF2α release on days 12-13 and 15-16 in pregnant and cyclic pigs, respectively. IL6 increased PGF2α release mainly on days 15-16 of pregnancy. Expression of PGFS mRNA was decreased by IL1β on days 12-13 of pregnancy (P < 0.05) and increased in response to IL1β, TNFα and IL6 on 12-13 (P < 0.05) and 15-16 (P < 0.01) of the estrous cycle. IL1β increased release of PGFM in gravid pigs on days 12-13, 15-16 and in non-gravid pigs 10-11 and 15-16 of the cycle. On days 15-16 of pregnancy TNFα and IL6 increased endometrial secretion of PGFM. We determined that in porcine endometrium NAD-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is present. In gravid pigs, the highest expression of endometrial 15-PGDH occurred during days 12-13 of pregnancy, while in non-gravid pigs during days 10-11 of the estrous cycle. These data provide new evidence that TNFα, IL1β, IL6 are involved in the regulation of endometrial synthesis, release and metabolism of PGF2α to protect CL during early pregnancy or to facilitate its regression in cyclic females.  相似文献   

8.
9.
10.
Transcervical artificial insemination in sheep is limited by the inability to completely penetrate the cervix with an inseminating pipette. Penetration is partially enhanced at estrus due to a degree of cervical relaxation, which is probably regulated by cervical prostaglandin synthesis and extracellular matrix remodeling. Prostaglandin E2 acts via prostaglandin E receptors EP1 to EP4, and EP2 and EP4 stimulate smooth muscle relaxation and glycosaminoglycan synthesis. This study investigated the expression of EP2 and EP4 mRNA and glycosaminoglycans in the sheep cervix during the estrous cycle. Sheep cervices were collected prior to, during, and after the luteinizing hormone (LH) surge and during the luteal phase. The mRNA expression of EP2 and EP4 was determined by in situ hybridization, glycosaminoglycan composition was assessed by Alcian blue staining, and hyaluronan concentration was investigated by ELISA. The expression of EP2 mRNA was greatest prior to the LH surge (P = 0.02), although EP2 and EP4 were expressed throughout the estrous cycle. Hyaluronan was the predominant glycosaminoglycan, and hyaluronan content increased prior to the LH surge (P < 0.05). Cervical EP2 mRNA expression changed throughout the estrous cycle and was greatest prior to the LH surge. We propose that prostaglandin E2 binds to EP2 and EP4 stimulating hyaluronan synthesis, which may cause remodeling of the cervical extracellular matrix, culminating in cervical relaxation.  相似文献   

11.
This study was performed to elucidate the changes in IFNT messenger RNA (mRNA) levels in in vivo–fertilized and parthenogenetic bovine embryos and their interferon-τ (IFNT) secretion amounts during the elongation phase. We assessed the induction capability of maternal recognition of pregnancy by parthenogenetic embryos and attempted cotransfer of in vivo–fertilized and parthenogenetic embryos. The expression level of IFNT mRNA in in vivo–fertilized embryos peaked on Day 18 after estrus, and the highest amount of uterine IFNT was observed on Day 20. Transfer of 10 parthenogenetic embryos produced a detectable amount of uterine IFNT. Transfer of one or three parthenogenetic embryos inhibited luteolysis. An increase in ISG15 mRNA levels in peripheral granulocytes was induced by the transfer of three parthenogenetic embryos. Cotransfer of three parthenogenetic embryos significantly improved the pregnancy rate on Day 40 in code 3 in vivo–fertilized embryos compared with single transfer without parthenogenetic embryos (65% vs. 35%). However, the pregnancy rate on Day 90 (35%) in cotransfer of code 3 in vivo–fertilized embryos did not differ from that upon single transfer (29%), because the cotransfer group had a higher incidence of pregnancy loss than with single transfer (47% vs. 17%) after Day 40. Cotransfer did not affect the pregnancy rate of code 2 in vivo–fertilized embryos. The incidence of pregnancy loss was higher in cotransfer of code 2 in vivo–fertilized embryos than in single transfer (30% vs. 7%). In conclusion, parthenogenetic embryos in the elongation phase secreted IFNT, enabling induction of maternal recognition of pregnancy. The present study revealed that enhancement of the maternal recognition of pregnancy using parthenogenetic embryos promoted the viability of poor-quality embryos until Day 40 of gestation. However, the incidence of pregnancy loss increased after Day 40 in the cotransfer of parthenogenetic embryos. A technique for promoting the full-term survival of poor-quality embryos is needed.  相似文献   

12.
Estradiol-17β (E2) is a potent regulator of early pregnancy and the estrous cycle in pigs. Production of E2 occurs in the porcine myometrium, but the factors involved in its regulation are unknown. In this in vitro study, it was investigated whether interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α affect the release of E2 from the porcine myometrium on Days 10 to 11, 12 to 13, and 15 to 16 of pregnancy and the estrous cycle. The expression of the cytochrome P450 family 19 (CYP19) gene and the presence of the aromatase cytochrome P450 protein in the myometrium confirmed the ability of the tissue to produce E2. In gravid pigs, the expression of IL1RI mRNA and IL6R mRNA was markedly increased on Days 15 to 16 of gestation, whereas TNFRI mRNA was increased on Days 10 to 11 of gestation. In cyclic pigs, the expression of myometrial IL1RI mRNA did not differ among the studied days, although the expression of IL6R and TNFRI mRNAs was increased on Days 15 to 16. In gravid pigs, IL-1β, IL-6, and TNF-α increased myometrial E2 secretion on Days 15 to 16 but did not affect E2 release on Days 10 to 11 and 12 to 13 of pregnancy. In cyclic pigs, IL-1β, IL-6, and TNF-α did not increase myometrial E2 release. In conclusion, IL-1β, IL-6, and TNF-α affected myometrial E2 release in a manner that is dependent on the physiologic status of the female. The porcine myometrium expresses IL1RI, IL6R, and TNFRI genes and is the target tissue for IL-1β, IL-6, and TNF-α. In gravid pigs, IL-1β, IL-6, and TNF-α may increase myometrial release of E2in vitro specifically on Days 15 to 16 of pregnancy. These findings may be of interest to researchers using pigs as an animal model for fetal programming.  相似文献   

13.
14.
In the present study, we investigated the in vitro effects of peroxisome proliferator activated receptor (PPAR) ligands on PGF secretion and mRNA expression of prostaglandin F synthase (PGFS) in porcine endometrial explants collected on days 10–12 and 14–16 of the estrous cycle or pregnancy. The explants were incubated for 6 h with: PPARα ligands – WY-14643 (agonist) and MK 886 (antagonist); PPARβ ligands – l-165,041 (agonist) and GW 9662 (antagonist); PPARγ ligands – 15d-prostaglandin J2 (PGJ2, agonist), rosiglitazone (agonist) and T0070907 (antagonist). The expression of PGFS mRNA in the endometrium and the concentration of PGF in culture media were determined by real time RT-PCR and radioimmunoassay, respectively. During the estrous cycle (days 10–12 and 14–16), the agonists – WY-14643 (PPARα), l-165,041 (PPARβ), PGJ2 and rosiglitazone (PPARγ) – increased PGF secretion but did not affect PGFS mRNA abundance. During pregnancy (days 10–12 and 14–16), PPARα and PPARγ ligands did not change PGF release, whereas PPARβ agonist augmented PGF release on days 14–16 of pregnancy. In addition, WY-14643 and l-165,041 increased PGFS mRNA level in both examined periods of pregnancy. PPARγ agonist (PGJ2) and antagonist (T0070907) enhanced PGFS mRNA abundance in the endometrium on days 10–12 and 14–16 of pregnancy, respectively. The results indicate that PPARs are involved in the production of PGF by porcine endometrium, and that the sensitivity of the endometrium to PPAR ligands depends on reproductive status of animals.  相似文献   

15.
《Theriogenology》2015,83(9):1224-1230
Previously, it was reported that intraluteal implants containing prostaglandin E1 or E2 (PGE1 and PGE2) in Angus or Brahman cows prevented luteolysis by preventing loss of mRNA expression for luteal LH receptors and luteal unoccupied and occupied LH receptors. In addition, intraluteal implants containing PGE1 or PGE2 upregulated mRNA expression for FP prostanoid receptors and downregulated mRNA expression for EP2 and EP4 prostanoid receptors. Luteal weight during the estrous cycle of Brahman cows was reported to be lesser than that of Angus cows but not during pregnancy. The objective of this experiment was to determine whether intraluteal implants containing PGE1 or PGE2 alter vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), angiopoietin-1 (ANG-1), and angiopoietin-2 (ANG-2) protein in Brahman or Angus cows. On Day 13 of the estrous cycle, Angus cows received no intraluteal implant and corpora lutea were retrieved, or Angus and Brahman cows received intraluteal silastic implants containing vehicle, PGE1, or PGE2 on Day 13 and corpora lutea were retrieved on Day 19. Corpora lutea slices were analyzed for VEGF, FGF-2, ANG-1, and ANG-2 angiogenic proteins via Western blot. Day-13 Angus cow luteal tissue served as preluteolytic controls. Data for VEGF were not affected (P > 0.05) by day, breed, or treatment. PGE1 or PGE2 increased (P < 0.05) FGF-2 in luteal tissue of Angus cows compared with Day-13 and Day-19 Angus controls but decreased (P < 0.05) FGF-2 in luteal tissue of Brahman cows when compared w Day-13 or Day-19 Angus controls. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-1 in Angus luteal tissue when compared with Day-13 or Day-19 controls, but ANG-1 was decreased (P < 0.05) by PGE1 or PGE2 in Brahman cows when compared with Day-19 Brahman controls. ANG-2 was increased (P < 0.05) on Day 19 in Angus Vehicle controls when compared with Day-13 Angus controls, which was prevented (P < 0.05) by PGE1 but not by PGE2 in Angus cows. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-2 in Brahman cows. PGE1 or PGE2 may alter cow luteal FGF-2, ANG-1, or ANG-2 but not VEGF to prevent luteolysis; however, species or breed differences may exist.  相似文献   

16.
Recent experiments using expression, immunolocalization, and cell culture approaches have provided leading insights into regulation of luteal angiogenesis by different growth factor systems and its role in the function of corpus luteum (CL) in buffalo. On the contrary, lymphangiogenesis and its regulation in the CL are still poorly understood. The aim of this study was to evaluate the expression and localization of lymphangiogenic factors (vascular endothelial growth factor [VEGF]-C and VEGFD), their receptor (VEGFR3), and lymphatic endothelial marker (LYVE1) in bubaline CL during different stages of the estrous cycle and to investigate functional role of VEGFC and VEGFD in luteal lymphangeogenesis. The mRNA and protein expression of VEGFC, VEGFD, and VEGFR3 was significantly greater in mid and late luteal phases, which correlated well with the expression of LYVE1. The lymphangiogenic factors were localized in luteal cells, exclusively in the cytoplasm. Immunoreactivity of VEGFC was greater during midluteal phase and that of VEGFD was greater during the mid and late luteal phases. Luteal cells were cultured in vitro and treated for different time duration (24, 48, and 72 hours) with VEGFC and VEGFD each at 50, 100, and 150 ng/mL concentration and VEGFC with VEGFD at 100 ng/mL concentration. The temporal increase in LYVE1 mRNA expression was significant (P < 0.05) in VEGFC and VEGFC with VEGFD treatment and no significant change was seen in VEGFD treatment. Thus, it seems likely that VEGFD itself has little role in lymphangiogenesis but along with VEGFC it might have a synergistic effect on VEGFR3 receptors for inducing lymphangiogenesis. In summary, the present study provided evidence that VEGFC and VEGFD, and their receptor VEGFR3, are expressed in bubaline CL and are localized exclusively in the cell cytoplasm, suggesting that these factors have a functional role in lymphangiogenesis of CL in buffalo.  相似文献   

17.
Loss of luteal progesterone secretion at the end of the ovine estrous cycle is via uterine PGF2α secretion. However, uterine PGF2α secretion is not decreased during early pregnancy in ewes. Instead, the embryo imparts a resistance to PGF2α. Prostaglandins E (PGE; PGE1 + PGE2) are increased in endometrium and uterine venous blood during early pregnancy in ewes to prevent luteolysis. Chronic intrauterine infusion of PGE1 or PGE2 prevents spontaneous or IUD, estradiol-17β, or PGF2α-induced premature luteolysis in nonbred ewes. The objective was to determine whether chronic intrauterine infusion of PGE1 or PGE2 affected mRNA for LH receptors, occupied and unoccupied receptors for LH in luteal and caruncular endometrium, and luteal function. Ewes received Vehicle, PGE1, or PGE2 every 4 h from days 10 to 16 of the estrous cycle via a cathether installed in the uterine lumen ipsilateral to the luteal-containing ovary.Jugular venous blood was collected daily for analysis of progesterone and uterine venous blood was collected on day-16 for analysis of PGF2α and PGE. Corpora lutea and caruncular endometrium were collected from day-10 preluteolytic control ewes and day-16 ewes treated with Vehicle, PGE1 or PGE2 for analysis of the mRNA for LH receptors and occupied and unoccupied receptors for LH. Luteal weights on day-16 in ewes treated with PGE1 or PGE2 and day-10 control ewes were similar (P  0.05), but were greater (P  0.05) than in day-16 Vehicle-treated ewes. Progesterone profiles on days 10–16 differed (P  0.05) among treatment groups: PGE1 > PGE2 > Vehicle-treated ewes. Concentrations of PGF2α and PGE in uterine venous plasma on day-16 were similar (P  0.05) in the three treatment groups. Luteal mRNA for LH receptors and unoccupied and occupied LH receptors were similar (P  0.05) in day-10 control ewes and day-16 ewes treated with PGE2 and were lower (P  0.05) in day-16 Vehicle-treated ewes. PGE2 prevented loss (P  0.05) of day-16 luteal mRNA for LH receptors and occupied and unoccupied LH receptors. Luteal and caruncular tissue mRNA for LH receptors and occupied and unoccupied LH receptors were greater (P  0.05) on day-16 of PGE1-treated ewes than any treatment group. mRNA for LH receptors and occupied and unoccupied receptors for LH in caruncules were greater (P  0.05) in day-16 Vehicle or PGE2-treated ewes than in day-10 control ewes. It is concluded that PGE1 and PGE2 share some common mechanisms to prevent luteolysis; however, only PGE1 increased luteal and endometrial mRNA for LH receptors and occupied and unoccupied LH receptors. PGE2 prevents a decrease in luteal mRNA for LH receptors and occupied and unoccupied receptors for LH without altering endometrial mRNA for LH receptors or occupied and unoccupied receptors for LH.  相似文献   

18.
19.
The roles of fibroblast growth factor 2 (FGF2) in the corpus luteum (CL) function and its modulatory effect on prostaglandin (PG) F during the bovine estrous cycle were studied using the following design of in vivo and in vitro experiments: (1) effects of FGF2 and FGF receptor 1 inhibitor (PD173074) on bovine CL function in the early (PGF-resistant) and mid (PGF-responsive) luteal stage in vivo, (2) the modulatory effect of FGF2 on PGF action during the luteal phase in vivo and (3) effects of FGF2 and PD173074 on bovine CL secretory function in vitro. Cows were treated by injection into the CL with: (1) saline (control), (2) FGF2, (3) PD173074, (4) FGF2 followed by intramuscular (i.m.) PGF, (5) PD173074 followed by i.m. PGF and (6) i.m. PGF as a positive control. For in vitro experiments, CL explants were treated with the aforementioned factors. Progesterone (P4) concentrations of blood samples or culture media were determined by radioimmunoassay. Relative mRNA expressions of the genes involved in angiogenesis and steroidogenesis were determined by quantitative real-time PCR. Although FGF2 treatment on day 4 of the estrous cycle did not change the cycle length, FGF2 with PGF decreased the P4 concentrations observed during the estrous cycle compared to the control group (P < 0.001). Moreover, FGF2 treatment on day 10 prolonged CL function as indicated by a significantly greater concentration of P4 on day 21 compared to the control group. In the in vitro study, FGF2 decreased cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase (HSD3B1) mRNA expression (P < 0.01) and decreased P4 production in the early-stage CL (P < 0.001). However, FGF2 + PGF or PGF alone resulted in an elevation of steroidogenic acute regulatory protein and CYP11A1 mRNA expression and P4 secretion in the early-stage CL (P < 0.01). In the mid-luteal phase, FGF2 upregulated CYP11A1 and HSD3B1 mRNA expression (P < 0.01), while FGF2 + PGF increased only HSD3B1 mRNA expression (P < 0.001). In conclusion, FGF2 seems to play a modulatory role in CL development or luteolysis, differentially regulating steroidogenesis and angiogenic factors as well as PGF actions.  相似文献   

20.
During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1?μg/mL LPS, 10?ng/mL IL-1β and 50?ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF, PGE2-EA and PGF-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号