共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymidine phosphorylase is an enzyme involved in pyrimidine salvage pathway that is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is enormously up regulated in a variety of solid tumors. Furthermore, surpassing of TP level protects tumor cells from apoptosis and helps cell survival. Thus TP is identified as a prime target for developing novel anticancer therapies. A new class of exceptionally potent isatin based oxadiazole (1–30) has been synthesized and evaluated for thymidine phosphorylase inhibitory potential. All analogs showed potent thymidine phosphorylase inhibition when compared with standard 7-Deazaxanthine, 7DX (IC50 = 38.68 ± 1.12 µM). Molecular docking study was performed in order to determine the binding interaction of these newly synthesized compounds, which revealed that these synthesized compounds established stronger hydrogen bonding network with active site of residues as compare to the standard compound 7DX. 相似文献
2.
Isoquinoline analogues (KA-1 to 16) have been synthesized and evaluated for their E. coli thymidine phosphorylase inhibitory activity. Except compound 11, all other analogs showed outstanding thymidine inhibitory potential ranging in between 4.40 ± 0.20 to 69.30 ± 1.80 µM when compared with standard drug 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). Structure Activity Relationships has been established for all compounds, mainly based on substitution pattern on phenyl ring. All analogs were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR and EI-MS. The binding interactions of isoquinoline analogues with the active site of TP enzyme, the molecular docking studies were performed. Furthermore, the angiogenic inhibitory potentials of isoquinoline analogues (KA-1-9, 14, 12 and 16) were determined in the presence of standard drug Dexamethasone based on percentage inhibitions at various concentrations. Herein this work analogue KA-12, 14 and 16 emerged with most potent angiogenic inhibitory potentials among the synthesized analogues. 相似文献
3.
We have synthesized oxadiazole derivatives (1–16), characterized by 1H NMR, 13C NMR and HREI-MS and screened for thymidine phosphorylase inhibitory potential. All derivatives display varied degree of thymidine phosphorylase inhibition in the range of 1.10 ± 0.05 to 49.60 ± 1.30 μM when compared with the standard inhibitor 7-Deazaxanthine having an IC50 value 38.68 ± 1.12 μM. Structure activity relationships (SAR) has been established for all compounds to explore the role of substitution and nature of functional group attached to the phenyl ring which applies imperious effect on thymidine phosphorylase activity. Molecular docking study was performed to understand the binding interaction of the most active derivatives with enzyme active site. 相似文献
4.
Thymidine phosphorylase (TP) catalyzes the cleavage of thymidine into thymine and 2-deoxy-α-d-ribose-1-phosphate. Elevated activity of TP prevents apoptosis, and induces angiogenesis which ultimately leads to tumor growth and metastasis. Critical role of TP in cancer progression makes it a valid target in anti-cancer research. Discovery of small molecules as TP inhibitors is vigorously pursued in cancer therapy. In the present study, we functionalized thymidine as benzoyl ester to synthesize compounds 3–16. In vitro evaluation of thymidine esters for their thymidine phosphorylase inhibition activity was subsequently carried out. Compounds 4, 10, 14, and 15 showed good activities with lower IC50 values than the standard, 7-deazaxanthine (IC50 = 41.0 ± 1.63 μM). Among them, compound 14 showed five folds higher activity (IC50 = 7.5 ± 0.8 μM), while 4 (IC50 = 18.5 ± 1.0 μM) and 10 (IC50 = 18.8 ± 1.2 μM) showed two folds higher activity than the standard. Compound 15 showed slightly better activity (IC50 = 33.3 ± 1.5 μM) to the standard. Potent compounds were further subjected to kinetic and molecular docking studies to identify their mode of inhibition, and to study their interactions with the protein at atomic level, respectively. All active compounds were non-cytotoxic to mouse fibroblast 3T3 cell line. These results identify thymidine esters as substrate analogue (substrate-like) inhibitors of angiogenic enzyme thymidine phosphorylase for further studies. 相似文献
5.
Identification of 1,2,4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs
Thymidine phosphorylase (TP) is over expressed in several solid tumors and its inhibition can offer unique target suitable for drug discovery in cancer. A series of 1,2,4-triazoles 3a–3l has been synthesized in good yields and subsequently inhibitory potential of synthesized triazoles 3a–3l against thymidine phosphorylase enzyme was evaluated. Out of these twelve analogs five analogues 3b, 3c, 3f, 3l and 3l exhibited a good inhibitory potential against thymidine phosphorylase. Inhibitory potential in term of IC50 values were found in the range of 61.98 ± 0.43 to 273.43 ± 0.96 μM and 7-Deazaxanthine was taken as a standard inhibitor with IC50 = 38.68 ± 4.42 μM. Encouraged by these results, more analogues 1,2,4-triazole-3-mercaptocarboxylic acids 4a–4g were synthesized and their inhibitory potential against thymidine phosphorylase was evaluated. In this series, six analogues 4b–4g exhibited a good inhibitory potential in the range of 43.86 ± 1.11–163.43 ± 2.03 μM. Angiogenic response of 1,2,4-triazole acid 4d was estimated using the chick chorionic allantoic membrane (CAM) assay. In the light of these findings, structure activity relationship and molecular docking studies of selected triazoles to determine the key binding interactions was discussed. Docking studies demonstrate that synthesized analogues interacted with active site residues of thymidine phosphorylase enzyme through π-π stacking, thiolate and hydrogen bonding interactions. 相似文献
6.
Urease is known to be one of the major causes of diseases induced by Helicobacter pylori, thus allow them to survive at low pH inside the stomach and thereby, play an important role in the pathogenesis of gastric and peptic ulcer, apart from cancer as well. Keeping in view the great importance of urease inhibitors, here in this study we have synthesized piperazine derivatives (1–15) and evaluated for their urease inhibitory activity. All analogs showed excellent inhibitory potential with IC50 values ranging between 1.1 ± 0.01 and 33.40 ± 1.50 µM when compared with the standard inhibitor thiourea (IC50 = 21.30 ± 1.10 µM). Structure activity relationship has been established for all compounds which are mainly based upon the substitution on phenyl ring. Molecular docking study was performed in order to understand the binding interaction of the compounds in the active site of enzyme. 相似文献
7.
Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-thione (1–12) has been synthesized under simple reaction conditions in good to excellent yields (86–98%) and their TP inhibition potential has also been evaluated. The majority of synthesized compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values ranging from 38.24 ± 1.28 to 258.43 ± 0.43 μM, and 7-deazaxanthine (7DX) was used as a reference compound (IC50 38.68 ± 4.42). The TP activity was very much dependent on the C-5 substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be the most active with IC50 38.24 ± 1.28 μM. Molecular docking studies revealed their binding mode. 相似文献
8.
Kirubhanand Chandrashekar Ponnulakshmi Rajagopal Shazia Fathima JH Saravanan Radhakrishnan Vijaya Prakash Krishnan Muthaiah Bharat Ramrao Sontakke Vishwajit Ravindra Deshmukh Vijayalakshmi Periyasamy Gayatri Girish Muthiyan Aaditya Madhusudan Tarnekar TS Gugapriya Patil Ashlesh Laxman Satyendra Chandra Tripathi Selvaraj Jayaraman 《Bioinformation》2021,17(10):866
Cissampelos pareira Linn. is a climbing herb known in Indian traditional medicine as laghupatha. It belongs to the Menispermaceae family. The enzyme glycogen phosphorylase (GP) is a promising target for the treatment of type-2 diabetes (T2DM). A variety of natural product inhibitors with both pharmaceutical and nutraceutical potential have been reported in the search for powerful, selective and drug-like GP inhibitors that could lead to hypoglycemic medicines. Therefore, it is of interest to document the molecular docking analysis data of glycogen phosphorylase with compounds from Cissampelos pareira Linn. We report the optimal binding features of 4 compounds namely Trans-N-feruloyltyramine, Coclaurine, Magnoflorine, and Curine with the target protein for further consideration in the context of T2DM. 相似文献
9.
Twelve novel fenfuram-diarylether hybrids were designed, synthesized and characterized by 1H NMR and MS. Their in vitro antifungal activities were evaluated against five phytopathogenic fungi by mycelial growth inhibition method. Most compounds showed significant antifungal effect on Rhizoctonia solani and Sclerotinia sclerotiorum. Compound 1c exhibited the most potent antifungal effect on R. solani with an EC50 value of 0.242 mg/L, superior to the commercial fungicide boscalid (EC50 = 1.758 mg/L) and the lead fungicide fenfuram (EC50 = 7.691 mg/L). Molecular docking revealed that compound 1c featured a higher affinity for succinate dehydrogenase (SDH) than fenfuram. Furthermore, it was shown that the 2-chlorophenyl group of compound 1c formed a π-π stacking with D/Tyr-128 and a Cl-π interaction with B/His-249, which made compound 1c more active than fenfuram against SDH. 相似文献
10.
Twenty five derivatives of indole carbohydrazide (1–25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1–25) showed varying degree of α-amylase inhibitory potential.ranging between 9.28 and 599.0 µM when compared with standard acarbose having IC50 value 8.78 ± 0.16 µM. Six analogs, 25 (IC50 = 9.28 ± 0.153 µM), 22 (IC50 = 9.79 ± 0.43 µM), 4 (IC50 = 11.08 ± 0.357 µM), 1 (IC50 = 12.65 ± 0.169 µM), 8 (IC50 = 21.37 ± 0.07 µM) and 14 (IC50 = 43.21 ± 0.14 µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50 = 8.78 ± 0.16 µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies. 相似文献
11.
A new series of N-substituted thiosemicarbazones (3a-u) bearing 2-naphthyl and dihydrobenzofuranyl scaffolds were synthesized in good to excellent yields (78–95%). The synthesized compounds were characterized by advanced spectroscopic techniques, such as FTIR, 1HNMR, 13CNMR and ESI-MS and evaluated as urease inhibitors. The structure of compound 3m was unambiguously confirmed by single crystal X-ray analysis. All compounds showed remarkable activities against urease enzyme with IC50 values in range of 1.4–36.1 µM. The majority of the synthesized compounds showed higher activity than the standard compound thiourea. Molecular docking was performed to study the mode of interaction of these compounds and their structure-activity relationship. These studies revealed that the compounds bind at the active site and interacts with the nickel atom present in the binding site. The molecular docking demonstrated excellent co-relations with the experimental findings. 相似文献
12.
Karen Aknin Alexis Bontemps Amaury Farce Eric Merlet Philippe Belmont Philippe Helissey Philippe Chavatte Marie-Agns Sari Sylviane Giorgi-Renault Stphanie Desbne-Finck 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):252
New polycyclic heterocycles were synthesised and evaluated as potential inhibitors of thymidine phosphorylase (TP). Inspired by the pharmacophoric pyrimidinedione core of the natural substrate, four series have been designed in order to interact with large empty pockets of the active site: pyrimidoquinoline-2,4-diones (series A), pyrimidinedione linked to a pyrroloquinoline-1,3-diones (series B and C), the polycyclic heterocycle has been replaced by a pyrimidopyridopyrrolidinetetraone (series D). In each series, the tricyclic nitrogen heterocyclic moiety has been synthesised by a one-pot multicomponent reaction. Compared to 7-DX used as control, 2d, 2l, 2p (series A), 28a (series D), and the open intermediate 30 showed modest to good activities. A kinetic study confirmed that the most active compounds 2d, 2p are competitive inhibitors. Molecular docking analysis confirmed the interaction of these new compounds at the active binding site of TP and highlighted a plausible specific interaction in a pocket that had not yet been explored. 相似文献
13.
《Bioorganic & medicinal chemistry》2014,22(3):1008-1015
Based on the fact that the thymidine phosphorylase inhibitors are considered potential anti-tumor agents, a range of novel oxadiazole derivatives 3a–3u was designed and synthesized by a simple and facile synthetic route. The biological assay revealed that majority of compounds displayed modest inhibitory activity against thymidine phosphorylase at low micromolar concentrations (IC50 173.23 ± 3.04 to 14.40 ± 2.45 μM). In the current study the most active compounds were 3h and 3q with IC50 values 14.40 ± 2.45 and 17.60 ± 1.07 μM, respectively. Molecular docking studies were performed on the most active compounds (3h, 3k, 3o–3q) to show their binding mode. 相似文献
14.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking. 相似文献
15.
Abstract: Lactobacillus casei cells grown on excess thymine or on folic acid contained low levels of thymidine phosphorylase. On the other hand, thymine starved cells and also cells of a thymidine-monophosphate-kinase-defective mutant grown on excess thymine, possessed derepressed levels. These results suggest that the synthesis of thymidine phosphorylase is regulated by the end product of the thymidine-triphosphate-biosynthetic pathway. L. casei cells lacked 2-deoxyribose-1-phosphate-mutase activity and did not grow on 2-deoxyribose or thymidine as the sole-carbon source. Growth in the presence of thymidine did not result in induction of thymidine-phosphorylase synthesis, probably due to the inability of the cell to convert it to 2-deoxyribose-5-phosphate, which is known to act as an inducer in E. coli cells. Thymidine triphosphate inhibited non-competitively the activity of thymidine phosphorylase. It was also inhibited by dihydrofolic acid. 相似文献
16.
《Bioorganic & medicinal chemistry》2016,24(16):3742-3751
In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6 μM and 0.6 μM, respectively. Further structure–activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes’ inhibition. The Lineweaver–Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer. 相似文献
17.
In our lead finding program, a series of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones and their 5-thio-alkyl derivatives were designed and synthesized which contained different substituents at ortho-position of 2-phenyl ring attached to the fused ring structure. The preliminary pharmacological evaluation demonstrated that the synthesized compounds exhibited a varying degree of inhibitory activity towards thymidine phosphorylase (TP), comparable to reference compound, 7-Deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). The study also inferred that the ortho-substituted group at the phenyl ring and 5-thio-alkyl moiety imparted steric hindrance effects in the binding site of the enzyme, leading to a reduced inhibitory response. In addition, compound 3a was identified as a mixed-type inhibitor of TP. Moreover, computational docking study was performed to illustrate the important structural information on the plausible ligand-enzyme binding interactions. 相似文献
18.
Watson KA Chrysina ED Tsitsanou KE Zographos SE Archontis G Fleet GW Oikonomakos NG 《Proteins》2005,61(4):966-983
Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site. 相似文献
19.
Pyrimidine-fused compounds are of great interest for the discovery of potent bioactive agents. This study describes the synthesis of novel pyranopyrimidines 3a-f and pyranotriazolopyrimidines 4a-d derivatives via the cyclocondensation reaction of α-functionalized iminoether 2, which was obtained from 2-amino-3-cyanopyrane 1, with a series of primary aromatic amines and hydrazides, respectively. Structures of all synthesized compounds were established on the basis of spectroscopic methods including 1H NMR, 13C NMR and ES-HRMS. They were finally tested for their anticoagulant and anti-tyrosinase activities. Significant results have been obtained and the structure-activity relationship (SAR) was discussed with the help of molecular docking analysis. 相似文献
20.
Eirini Mitsiki Shalini Iyer Steven H. Prior Darrell Sleep K. Ravi Acharya 《Biochemical and biophysical research communications》2009,386(4):666-1420
Thymidine phosphorylase (TP) first identified as platelet derived endothelial cell growth factor (PD-ECGF) plays a key role in nucleoside metabolism. Human TP (hTP) is implicated in angiogenesis and is overexpressed in several solid tumors. Here, we report the crystal structures of recombinant hTP and its complex with a substrate 5-iodouracil (5IUR) at 3.0 and 2.5 Å, respectively. In addition, we provide information on the role of specific residues in the enzymatic activity of hTP through mutagenesis and kinetic studies. 相似文献