首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two braconid parasitoids of cereal stemborers in eastern Africa, Cotesia sesamiae and Cotesia flavipes, have been shown to display a similar hierarchy of behavioural events during host recognition and acceptance. In order to understand the mechanisms underlying host recognition and acceptance, the morphology of antennal sensilla on the last antennomeres, on the ovipositor, and on the fifth tarsomere and pretarsus of the prothoracic legs tarsi were studied using scanning electron microscopy followed by selective silver nitrate staining. It appeared that female C. sesamiae and C. flavipes shared the same types and distribution of sensory receptors, which enable them to detect volatiles and contact chemical stimuli from their hosts. In both parasitoids, four types of sensilla were identified on the three terminal antennomeres: (i) non-porous sensilla trichodea likely to be involved in mechanoreception, (ii) uniporous sensilla chaetica with porous tips that have gustatory functions, (iii) multiporous sensilla placodea, which are likely to have olfactory function, and (iv) sensilla coeloconica known to have thermo-hygroreceptive function. The tarsi of both parasitoids possessed a few uniporous sensilla chaetica with porous tips, which may have gustatory functions. The distal end of the ovipositor bore numerous dome-shaped sensilla. However, there were no sensilla coeloconica or styloconica, known to have gustatory function in other parasitoid species, on the ovipositors of the two braconid wasps.  相似文献   

2.
Trissolcus brochymenae (Hymenoptera: Platygastridae) is an egg parasitoid that could be used to control stink bugs like Murgantia histrionica (Heteroptera: Pentatomidae), a pest of brassicaceous crops. Before laying their eggs, parasitoid females spend considerable time examining the substrate with their antennae, which are also used during feeding and mating behaviours. This suggests that contact chemoreception plays a prominent role in many aspects of parasitoid ecology. Therefore, we examined the sensitivity of antennal taste sensilla chaetica to several classical tastants including those that are appetitive or aversive. In addition we studied the taste preferences of wasps when presented with these chemicals alone or mixed. The sensilla chaetica of T. brochymenae responded to serial concentrations of sucrose, salts, and quinine, but no concentration-dependent effect was observed when testing sinigrin, a secondary metabolite found in many brassicaceae. However, both sinigrin and quinine inhibited responses to 0.1 M sucrose when mixed with this sugar. Behavioural taste preference assays confirmed that wasps showed a dose dependent preference for sucrose over agarose. In addition, a behavioural avoidance of sucrose solutions containing quinine was observed. This effect was not observed when sinigrin was used as a feeding deterrent. In the two-choice tests the wasp did not discriminate between sucrose solutions mixed with salts and sucrose alone. Further no preference for salts or sinigrin compared to agarose alone was observed. This work represents the first step towards the identification of gustatory receptor neurons implicated in the detection of different types of chemical cues in egg parasitoids.  相似文献   

3.
External morphology of antennal sensilla on female and male Trichogramma australicum (Hymenoptera : Trichogrammatidae) was examined using scanning electron microscopy. Antennae show strong sexual dimorphism in structure and types of sensilla. The female antenna displays 14 types of sensilla: basiconic capitate peg sensilla (types 1 and 2), campaniform sensilla, chaetica sensilla (types 1–3), coeloconic sensilla, falcate sensilla, placoid sensilla (types 1 and 2), styloconic sensilla and trichoid sensilla (types 1–3). The male antenna displays 12 types of sensilla: basiconic capitate peg sensilla (type 2), campaniform sensilla, chaetica sensilla (types 1–5), coeloconic sensilla, placoid sensilla (type 1), and trichoid sensilla (types 3–5). Falcate and styloconic sensilla occur only on the female antenna. Both sensilla probably are associated with host examination, host discrimination and oviposition behaviour. Male antennal trichoid sensilla types 4 and 5 are probably associated with courtship behaviour, because these types occur only on the male. We propose the term “falcate sensilla” for a unique female antennal sensilla; the number of falcate sensilla may be used for identification of Trichogramma spp. In addition, we report the presence of placoid sensilla type 2 and difference in structure of coeloconic sensilla in T. australicum. Variation in structure and position of antennal sensilla are discussed.  相似文献   

4.
李宗波  杨培  彭艳琼  杨大荣 《昆虫学报》2012,55(11):1272-1281
为探索木瓜榕传粉榕小蜂Ceratosolen emarginatus寄主定位机制, 应用扫描电镜和透射电镜观察了其雌蜂触角感器的类型、 分布和超微形态。结果显示: 木瓜榕传粉榕小蜂雌蜂触角呈膝状, 由柄节、 梗节和11个鞭小节组成的鞭节组成, 第3鞭小节着生一坚固的脊骨突。触角上共发现7类11种感器, 分别为毛形感器、 刺形感器、 锥形感器(包括单孔形和多孔形)、 多孔板形感器(包括长形和圆形)、 腔锥形感器(分为3种类型)、 栓锥形乳突状感器、 角锥形感器。结合表面特征和内部结构, 锥形感器、 多孔板形感器、 栓锥形乳突状感器和腔锥形感器类型1为有孔型, 为化学感器; 无孔型的毛形感器和刺形感器是机械感器, 但腔锥形感器类型2和3为本体感器或湿热压力感器; 最为特异的为角锥形感器, 其厚壁无孔, 逆向触角主轴, 为该科昆虫所特有, 推测可防止传粉榕小蜂进入榕果时滑脱。这些结果将有助于理解木瓜榕传粉榕小蜂特异性行为, 并为下一步开展电生理研究, 揭示其信息化学物质利用和分配模式奠定基础。  相似文献   

5.
The nipa palm hispid beetle, Octodonta nipae (Maulik) has been killing palm trees since its introduction into Hainan province, China, from Malaysia in 2001. It continues to spread within Hainan province, northeast to Fujian province, and northwest to Yunnan province within China. Knowledge on signals involved in mate location and recognition could help develop effective integrated pest management programs. In the present study, we first experimentally proved that antennae were essential in success of O. nipae mating. We then excised various segments/flagellomeres of adult male and female antennae and observed their mating behavior. Results revealed that the 5th to 9th flagellomeres, especially those of males, were important for the mating success. Finally, in an attempt to elucidate the types of antennal sensilla accountable for the mating success, morphology of O. nipae antennae was studied in detail with scanning electron microscopy. Six types of sensilla were distinguished: aporous sensilla trichodea (T1), multiporous sensilla trichodea (T2), aporous sensilla chaetica (Ch1), uniporous sensilla chaetica (Ch2), multiporous sensilla basiconica (B), and Böhm sensilla (Bm). Aporous sensilla trichodea is the most abundant; multiporous sensilla trichodea and sensilla basiconica are considered as olfactory receptors, and uniporous sensilla chaetica as gustatory receptor. Importance of flagellomeres 5–9 in mating success seemed to correspond to the abundance of sensilla on these segments.  相似文献   

6.
External morphology of antennal sensilla of both sexes of Phyllotetra cruciferae (Goeze) and Psylloides punctulata Melsh, both of which feed on the mustard family Cruciferae, and Epitrix cucumeris (Harris) and Psylloides affinis (Paykell), both of which feed on the nightshade family Solanaceae, was studied using scanning electron microscopy. All belong to Alticinae (Coleoptera : Chrysomelidae). The number and distribution of antennal sensilla were also determined. Eight types of sensilla could be distinguished on the flagella of the species examined: sensilla chaetica; sensilla trichodea I and II; long sensilla basiconica I and II; and short sensilla basiconica I, II and III. The sensilla chaetica are probable tactile mechanosensilla, whereas both types of sensilla trichodea and long sensilla basiconica likely function in olfaction. Suggested functions for the short sensilla basiconica I, II and III include hygro-/thermoreception and chemoreception.The lack of sexual dimorphism in antennal structure and in types as well as number of sensilla, indicates that the sensilla probably have similar functions in both sexes. Probably most of the antennal olfactory sensilla are involved in host location and recognition. Any correlation between number of a particular type of sensillum or total number of all types and general host preference is not apparent.  相似文献   

7.
The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L., and sorghum, Sorghum bicolor (L.) Moench (both Poaceae), in sub-Saharan Africa. Like in many other lepidopteran insects, the success of B. fusca in recognizing and colonizing a limited variety of plants is based on the interaction between its sensory systems and the physicochemical characteristics of its immediate environment. The sensilla on the maxillary galeae of B. fusca larvae are typical of Lepidoptera and comprise two uniporous styloconic sensilla, which are contact chemoreceptors, three basiconic sensilla, and two aporous sensilla chaetica. The maxillary palp is two-segmented and has eight small basiconic sensilla at the tip, which were also found to be gustatory. The antennae of B. fusca larvae are short and simple. The sensilla of the antenna are composed of two aporous sensilla chaetica, three multiporous cone-shaped basiconic sensilla, three small basiconic sensilla, and one aporous styloconic sensillum. The basiconic sensillum located on the third antennal segment displayed a contact chemoreception response. The other basiconic sensilla did not show any action potential activity in tip-recording tests. The significant and positive dose–response curve obtained for the antennal basiconic sensillum with sucrose indicated for the first time the presence of gustatory chemoreceptors on the antennae of a lepidopteran larva.  相似文献   

8.
The nut weevil, Curculio nucum (Linnaeus, 1758), is the main pest in hazelnut orchards (Corylus avellana L.). Semiochemicals are interesting bio control tools that could be used to manipulate the pest behaviour and to control pest populations. The study of the sensorial equipment of the insect antennae provides information on the importance of olfaction in the adult life for host plants and mate findings as well as on the putative other senses. Before electrophysiological investigation, the knowledge of antennae equipment is also necessary. The aim of this study is to determine the types, number and location of sensilla on the antennae of male and female adult C. nucum in order to determine their implication in seeking a sexual partner and a host plant. The 12-segmented antenna comprises a scape, a 7-segmented funicle and a 4-segmented club. Out of the nine sensillum types listed, three are present on the scape and the funicle and seven types on the club which gathers 71–73% of the total of sensilla. Tactile aporous sensilla chaetica C1, gustatory uniporous sensilla chaetica C2, olfactory multiporous sensilla basiconica B1 and B2 are found on both the dorsal and ventral surfaces of the club in both sexes. Thermo-hygroreceptive dome-shaped sensilla D, olfactory multiporous sensilla basiconica B3 and olfactory multiporous fluted sensilla basiconica F are found exclusively on the ventral surface of the club, suggesting that these sensilla are utilized in host plant acceptance during antennal tapping. The sexual dimorphism concerns only the numbers of sensilla chaetica C1 and sensilla basiconica B2.  相似文献   

9.
The ultrastructure and distribution of sensilla on the antennae of the cabbage stem flea beetle, Psylliodes chrysocephala, were investigated using scanning and transmission electron microscopy techniques. Eight different sensillar types were distinguished. These were; hair plate sensilla, sensilla chaetica, three types of sensilla trichodea, sensilla basiconica, grooved peg sensilla and styloconic sensilla. The sensilla chaetica are known to be gustatory receptors. Ultrastructure indicates that the hair plate sensilla and sensilla trichodea type one are probably mechanoreceptors, whilst the sensilla styloconica are probably thermo-hygro receptors. These thermo-hygroreceptors are unusual in that they are innervated by two sensory cells (one hygroreceptor and one thermoreceptor) rather than the more usual triad. The remaining four sensillar types all have a porous hair shaft, indicating an olfactory role. One of these (the grooved peg sensillum) may also have a thermoreceptive function. No sexual dimorphism was found in the structure, number or distribution of the antennal sensilla.  相似文献   

10.
《Journal of Asia》2023,26(1):102024
As insect vectors of pine wood nematodes, Monochamus alternatus Hope and Monochamus saltuarius Gebler have different levels of attractiveness to semiochemicals. Although active use of chemical communication in both species is well known, there was no report on the differences in morphology and distribution of antennal sensilla between the two Monochamus species. The present study was carried out to explore the morphology, distribution, and ultrastructure of antennal sensilla of the two species using scanning and transmission electron microscopy. The overall shapes of the antennae were not different between M. alternatus and M. saltuarius. However, both M. alternatus and M. saltuarius exhibited sexual dimorphism overall. The antennae of each species were composed of the scape, pedicel, and nine flagellomeres, with four morphological types of sensilla: trichodea, basiconica, chaetica, and coeloconica. The four types occurred in varying numbers and distributions. The sensilla chaetica type was the most abundant in both species. Three types of sensilla (trichodea, basiconica, and chaetica) could be subdivided according to the two Monochamus species; sensilla trichodea could be divided into two subtypes, and sensilla basiconica and sensilla chaetica into three. All sensilla basiconica subtypes were multiporous, indicating that their primary function was olfactory. Sensilla trichodea subtype 2 was uniporous, indicating that the function of these sensilla might be gustatory. The morphological information obtained in our study provides a basis for future investigation of the sensory physiological function of each type of sensilla in the two species.  相似文献   

11.

Introduction

Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures.

Results

Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds.

Conclusions

Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function.  相似文献   

12.
The antennal sensilla of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae) were examined with particular focus on the sensilla present on the apical flagellomere. T. fuscum antennae are composed of 11 segments, namely the scape, pedicel, and nine flagellomeres. Nine types of sensilla were observed: three types of sensilla chaetica, sensilla trichodea, two types of sensilla basiconica, grooved peg sensilla, thick-walled sensilla, and Böhm bristles. Seven of these types were present on the apical flagellomere, the exceptions were sensilla chaetica type 3 and Böhm bristles. There were no significant differences in the distribution or density of sensilla present on the ninth flagellomere of males and females, except that males had significantly more sensilla chaetica type 1, which are put forward as the putative contact chemoreceptors for T. fuscum.  相似文献   

13.
Highly developed chemoreception allows insects to detect foods, find mates, and escape natural enemies. We described the structures and distributions of antennal chemosensilla in Adelphocoris fasciaticollis Reuter by scanning electron microscopy and transmission electron microscopy. Seven major types of antennal sensilla were identified in adults of both sexes. Types 1 and 2 are sensilla chaetica and have thick cuticular walls with conspicuous grooves at their surfaces. Types 3 and 4 are multiporous sensilla trichodea with 1–3 dendrites located at the sensillum lymph, indicating a putative olfactory function. Types 5 and 6 are typical sensilla basiconica but share different characteristics in both external morphology and internal ultrastructure, and may be involved in the perception of host-associated odorants. The last sensilla were Böhm bristles. In addition to the morphological characterization, electrophysiological responses of antennal chemosensilla to 51 semiochemicals were investigated based on electroantennogram (EAG) recordings. Results revealed that different chemical stimuli elicited significantly different dose-dependent EAG responses, in which potential sex pheromone components and green leaf volatiles showed relatively higher EAG responses, but neither monoterpenes nor sesquiterpenes can elicit favorable EAG values. The results provided direct morphological and electrophysiological evidence that the adult antennae of A. fasciaticollis could function in searching for mates and host plants.  相似文献   

14.
A. Bekkaoui  E. Thibout 《BioControl》1993,38(1):101-113
The study of various behavioural criteria of femaleDiadromus pulchellus parasitoids in the presence of theirAcrolepiopsis assectella hosts has shown the essentially chemical nature of the stimulant determining host recognition. The physical stimuli of the cocoon seem not to be implicated. Thus cocoons whose original texture has been completely altered, either mechanically or chemically, as well as the silk excreted by the host caterpillars significantly stimulates the female parasitoids. The cocoon contact kairomones are detected in testing the aqueous extracts ofA. assectella which provoke a positive behavioural response from the females in a threshold concentration of 1 cocoon-equivalent. The comparison of aqueous extracts ofA. assectella host cocoons, and of non-host species:Bombyx mori, Ephestia kuehniella andCacoecimorpha pronubana demonstrate the kairomone specificity of the silk, the extracts of non-host cocoons being ignored by the parasitoid, as were the silk threads left byE. kuehniella caterpillars. Finally the contact kairomones linked to the silk seem to be independent of the host plant and of the nutrient diet of the host caterpillars. The cocoons spun by the caterpillars reared on leeks or on artificial diets with or without powdered leek provoke similar responses in the parasitoids.  相似文献   

15.
We describe the number, distribution, and function of sensilla located on different organs of Lobesia botrana (Lepidoptera: Tortricidae) females using scanning electron microscopy, selective staining, and contact electrophysiology. The tarsi of the prothoracic legs bear contact chemo‐mechanoreceptor sensilla chaetica (5–13 per tarsomere), arranged in rings mainly concentrated on ventral surfaces, and different mechanosensory structures (sensilla chaetica, sensilla squamiformia, sensilla campaniformia, and spines). A single contact chemo‐mechanoreceptor sensillum chaeticum is present between the claws on the pretarsus. The ventral surface of the ovipositor lobes is covered with numerous mechanosensory sensilla chaetica of different types, out of which 10 have a contact chemosensory function. Putative contact chemo‐mechanoreceptor sensilla were also observed on the proboscis and antenna. Longitudinal rows of alternated sensilla styloconica and basiconica are present on the distal part of the proboscis, and rings of sensilla chaetica are present at the antennal tip. The sensilla on these body parts may play different roles in the selection of an oviposition site.  相似文献   

16.
The terminal two antennal segments of male Aedes aegypti bear the same variety of sensillar types as the female's antenna, namely, sensilla chaetica, sensilla coeloconica, sensilla ampullacea, grooved pegs, and four types of sensilla trichodea: long and short, pointed-tipped trichodea and blunt-tipped types I and II. Each type of sensillum has a similar fine structure in both sexes. Of the 514 neurones which innervate these sensilla in the male, 91% are olfactory receptors, 7% mechanoreceptors, and 2% thermoreceptors. The total number of neurones in the male is about four times fewer than in the female, but the ratio of those responding to the various stimuli is similar.The sensilla studied herein probably mediate stimuli involved in location of suitable resting sites and nectar meals. In addition they are apparently involved in location of vertebrates as recent studies indicate that certain male mosquitoes are attracted to hosts to bring them into the proximity of the females for mating. This host finding behaviour of males would explain why they have the same sprectrum of sensillar types as do females.  相似文献   

17.
Antennal sensilla were compared in females and males of two sympatric mymarid Hymenoptera, Anaphes victus and A. listronoti which are, respectively, solitary and gregarious parasitoids of eggs of the carrot weevil Listronotus oregonensis (Coleoptera, Curculionidae). Both species are morphologically very similar in the area where they are sympatric. The external morphology of the sensilla was studied using scanning electron microscopy. Female antennae have seven different types of sensilla, morphologically similar in the two species: trichoid sensilla, which are putative mechanosensilla, sensilla chaetica types 1, 3 and 4, which are presumably contact chemosensilla, and sensilla chaetica type 2 and basiconic and placoid sensilla, which are presumed to be olfactory sensilla. The major difference between the two species is the number of sensilla chaetica type 4, of which 6–9 are found on the antennal club in A. victus, while 10–12 are present in A. listronoti. The antennae of the males of both species are similar in morphology and in the number and distribution of their four types of sensilla, i.e. trichoid sensilla, sensilla chaetica type 1 and basiconic and placoid sensilla. Accepted: 23 November 1998  相似文献   

18.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour.  相似文献   

19.
Characterisation of the arrestment responses of Trichogramma evanescens   总被引:1,自引:0,他引:1  
Summary Contact kairomones and oviposition in a host egg stimulated arrestment behaviour in Trichogramma evanescens, characterised by a reduction in walking speed and increased turning. Previous oviposition experience did not influence a parasitoid's response to contact kairomones, but successive encounters with kairomone patches resulted in parasitoids habituating to the contact chemical. Oviposition on a kairomone patch did not reverse this habituation effect. It was concluded that contact kairomones and host eggs will both contribute independently to the duration of a patch visit. The selection of patches by T. evanescens will depend on its response to kairomones. Results from this study indicate that the application of contact kairomones to field crops will not necessarily increase the probability of parasitoids finding hosts.  相似文献   

20.
Metaphycus parasaissetiae Zhang & Huang (Hymenoptera: Encyrtidae) is an important adult parasitoid of Parasaissetia nigra Nietner (Hemiptera: Coccoidea). The external morphology of the antennal sensilla of male and female M. parasaissetiae was examined using scanning electron microscopy. The geniculate antennae of male and female M. parasaissetiae were composed of a scape with a basal radicula, a barrel-shaped pedicel, and a long flagellum. Twelve morphologically distinct types of sensilla were identified, including multiporous placoid sensilla, campaniform sensilla, finger-like sensilla, multiporous basiconic sensilla (BS-1), three aporous types of basiconic sensilla (BS-2, BS-3, and BS-4), two types of aporous trichoid sensilla (TS-1 and TS-3), a type of multiporous trichoid sensilla (TS-2), and two types of sensilla chaetica (CH-1 and CH-2). Sex dimorphism in the sensilla composition of M. parasaissetiae is also observed. Major differences between the sexes were found in the number, distribution, shape, structure, and size of the identified sensilla. We also discuss on the functional aspects of these sensilla to elucidate the mechanisms involved in host searching and courtship behavior of M. parasaissetiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号