首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The objective was to compare the relative response between rams and bulls in characteristics of LH, FSH and testosterone (T) secretion, during and after long-term treatment with GnRH analogs. Animals were treated with GnRH agonist, GnRH antagonist, or vehicle (Control) for 28 days. Serial blood samples were collected on day 21 of treatment, and at several intervals after treatment. Injections of natural sequence GnRH were used to evaluate the capacity of the pituitary to release gonadotropins during and after treatment. Treatment with GnRH agonist increased basal LH and T concentrations in both rams and bulls, with a greater relative increase in bulls. Endogenous LH pulses and LH release after administration of GnRH were suppressed during treatment with GnRH agonist. Treatment with GnRH antagonist decreased mean hormone concentrations, LH and T pulse frequency, and the release of LH and T after exogenous GnRH, with greater relative effects in bulls. Rams previously treated with antagonist had a greater release of LH after administration of GnRH compared with control rams, while rams previously treated with agonist showed a reduced LH response. Bulls previously treated with agonist had reduced FSH concentrations and LH pulse amplitudes compared with control bulls while bulls previously treated with antagonist had greater T concentrations and pulse frequency. The present study was the first direct comparison between domestic species of the response in males to treatment with GnRH analogs. The findings demonstrated that differences do occur between rams and bulls in LH, FSH and testosterone secretion during and after treatment. Also, the consequences of treatment with either GnRH analog can persist for a considerable time after discontinuation of treatment.  相似文献   

2.
《Theriogenology》2012,77(9):1632-1638
The objectives were to: (1) develop an enzyme immunoassay (EIA) for insulin-like peptide 3 (INSL3) or relaxin-like factor (RLF) in bovine plasma; (2) investigate changes of plasma INSL3 concentrations from birth to pubertal age of beef bulls; and (3) compare changes in plasma concentrations of INSL3, testosterone, and LH. Plasma samples were collected from beef bull calves (n = 15) at birth (0 d) and at 28, 56, and 84 d after birth. Furthermore, in beef bulls around pubertal age (n = 26; age range 3 to 22 mo), plasma samples were collected at 1 to 4 mo intervals. Plasma INSL3 concentrations increased (P < 0.05) from 0 to 28, 28 to 56, and from 56 to 84 d of age. Plasma testosterone concentrations increased (P < 0.001) from 0 to 28 d, and from 28 to 56 d, but did not change from 56 to 84 d. For bulls around pubertal age, plasma INSL3 concentrations did not change from the prepubertal phase (3 to 6 mo) to the early pubertal phase (6 to 12 mo), but increased (P < 0.05) from the early to late pubertal phases (12 to 18 mo), and from the late pubertal to postpubertal phases (18 to 22 mo). Plasma testosterone concentrations increased from the prepubertal to early pubertal phases (P < 0.001), but did not change thereafter. Plasma LH concentrations did not change from 0 d to 84 d, but decreased (P < 0.001) from prepubertal to early pubertal phase, with no significant change thereafter. Plasma INSL3 concentrations increased during the first 3 mo of life and throughout the pubertal age in beef bulls. There were similar dynamic patterns for INSL3 and testosterone during the first 3 mo of life, but patterns subsequently diverged in bulls around pubertal ages.  相似文献   

3.
The objectives were to: (1) develop an enzyme immunoassay (EIA) for insulin-like peptide 3 (INSL3) or relaxin-like factor (RLF) in bovine plasma; (2) investigate changes of plasma INSL3 concentrations from birth to pubertal age of beef bulls; and (3) compare changes in plasma concentrations of INSL3, testosterone, and LH. Plasma samples were collected from beef bull calves (n = 15) at birth (0 d) and at 28, 56, and 84 d after birth. Furthermore, in beef bulls around pubertal age (n = 26; age range 3 to 22 mo), plasma samples were collected at 1 to 4 mo intervals. Plasma INSL3 concentrations increased (P < 0.05) from 0 to 28, 28 to 56, and from 56 to 84 d of age. Plasma testosterone concentrations increased (P < 0.001) from 0 to 28 d, and from 28 to 56 d, but did not change from 56 to 84 d. For bulls around pubertal age, plasma INSL3 concentrations did not change from the prepubertal phase (3 to 6 mo) to the early pubertal phase (6 to 12 mo), but increased (P < 0.05) from the early to late pubertal phases (12 to 18 mo), and from the late pubertal to postpubertal phases (18 to 22 mo). Plasma testosterone concentrations increased from the prepubertal to early pubertal phases (P < 0.001), but did not change thereafter. Plasma LH concentrations did not change from 0 d to 84 d, but decreased (P < 0.001) from prepubertal to early pubertal phase, with no significant change thereafter. Plasma INSL3 concentrations increased during the first 3 mo of life and throughout the pubertal age in beef bulls. There were similar dynamic patterns for INSL3 and testosterone during the first 3 mo of life, but patterns subsequently diverged in bulls around pubertal ages.  相似文献   

4.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

6.
Six Booroola and six Merino rams were fed either a diet which maintained constant live weight or the same diet plus a supplement of high protein lupin grain for 15 weeks, and changes in live weight and testicular volume were measured. Serial blood samples taken for 24 h before the start and 9 weeks after the treatment began were assayed for plasma LH and testosterone and the resulting profiles were analysed for pulses of both hormones. Five weeks later, the animals were given two intravenous injections of 1 μg gonadotrophin-releasing hormone (GnRH) 1 h apart in order to measure pituitary gland responsiveness. A further week later the animals were injected intravenously with 500 μg human chorionic gonadotrophin (hCG) and the levels of testosterone were measured in samples taken after 1.5 h to estimate the testicular responsiveness.The nutritional supplement stimulated testicular growth in both genotypes, so that at the end of the treatment period the testes had increased significantly (P<0.01) in volume by 66% in the Merinos and by 63% in the Booroolas. The live weights also increased, but by relatively less (34% and 43% for supplemented Merinos and Booroolas). The rates of increase in both testicular size and live weight were similar for the two breeds. There were no significant effects of diet on the tonic secretion of LH or testosterone, or on responsiveness to GnRH or hCG.The intervals between LH pulses were significantly shorter (P<0.05) in Booroola rams than in Merino rams both before and after treatment (5.8 h vs. 11.6 h before treatment). The breed differences in LH secretion were mimicked by the testosterone profiles. In the Booroolas, five of the twelve LH profiles contained groups consisting of two to four individually identifiable pulses, each of which elicited a separate pulse of testosterone. A pulse group was observed in only one profile from the Merinos (P=0.06). There were no significant differences between the genotypes in any other parameter of LH or testosterone secretion, or in their responsiveness to GnRH or hCG.It was concluded that (i) nutritional supplements will stimulate testicular growth in both Merino rams and Booroola rams; (ii) the increase in testicular size does not appear to involve an increase in the responsiveness of the testis to LH; and (iii) there are both qualitative and quantitative differences between the genotypes in the patterns of secretion of LH and testosterone which may be associated with the differences in their fecundity.  相似文献   

7.
Frequent blood samples were collected to study hormonal responses to GnRH in male and female leopards and tigers. Animals were anaesthetized with ketamine-HCl and blood samples were collected every 5 min for 15 min before and 160 min after i.v. administration of GnRH (1 micrograms/kg body weight) or saline. No differences in serum cortisol concentrations were observed between sexes within species, but mean cortisol was 2-fold greater in leopards than tigers. GnRH induced a rapid rise in LH in all animals (18.3 +/- 0.9 min to peak). Net LH peak height above pretreatment levels was 3-fold greater in males than conspecific females and was also greater in tigers than leopards. Serum FSH increased after GnRH, although the magnitude of response was less than that observed for LH. Basal LH and FSH and GnRH-stimulated FSH concentrations were not influenced by sex or species. Serum testosterone increased within 30-40 min after GnRH in 3/3 leopard and 1/3 tiger males. Basal testosterone was 3-fold greater in tiger than leopard males. LH pulses (1-2 pulses/3 h) were detected in 60% of saline-treated animals, suggesting pulsatile gonadotrophin secretion; however, in males concomitant testosterone pulses were not observed. These results indicate that there are marked sex and species differences in basal and GnRH-stimulated hormonal responses between felids of the genus Panthera which may be related to differences in adrenal activity.  相似文献   

8.
Testosterone (Te) concentrations fall gradually in healthy aging men. Postulated mechanisms include relative failure of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and/or gonadal Te secretion. Available methods to test Leydig cell Te production include pharmacological stimulation with human chorionic gonadotropin (hCG). We reasoned that physiological lutropic signaling could be mimicked by pulsatile infusion of recombinant human (rh) LH during acute suppression of LH secretion. To this end, we studied eight young (ages 19-30 yr) and seven older (ages 61-73 yr) men in an experimental paradigm comprising 1) inhibition of overnight LH secretion with a potent selective GnRH-receptor antagonist (ganirelix, 2 mg sc), 2) intravenous infusion of consecutive pulses of rh LH (50 IU every 2 h), and 3) chemiluminometric assay of LH and Te concentrations sampled every 10 min for 26 h. Statistical analyses revealed that 1) ganirelix suppressed LH and Te equally (> 75% median inhibition) in young and older men, 2) infused LH pulse profiles did not differ by age, and 3) successive intravenous pulses of rh LH increased concentrations of free Te (ng/dl) to 4.6 +/- 0.38 (young) and 2.1 +/- 0.14 (older; P < 0.001) and bioavailable Te (ng/dl) to 337 +/- 20 (young) and 209 +/- 16 (older; P = 0.002). Thus controlled pulsatile rh LH drive that emulates physiological LH pulses unmasks significant impairment of short-term Leydig cell steroidogenesis in aging men. Whether more prolonged pulsatile LH stimulation would normalize this inferred defect is unknown.  相似文献   

9.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

10.
Levels of testosterone and insulin-like peptide 3 (INSL3) secretions in response to different doses of human chorionic gonadotropin (hCG) in cultured interstitial cells were compared between retained and scrotal testes in dogs. Retained (n=10) and scrotal (n=9) testes were obtained from small-breed dogs. The testicular tissues were dispersed in Dulbecco's Modified Eagle Medium with Ham's nutrient mixture containing 2000 PU/ml dispase II and 10% fetal bovine serum. The cells were plated with differing concentrations (0-10 IU/ml) of hCG for 18 h in multiwell-plates. Testosterone and INSL3 in the same spent medium were measured by enzyme-immunoassays (EIA). A new EIA with a reliable detection range of 0.025-5 ng/ml was developed in order to measure canine INSL3 in culture medium. Dose-dependent stimulation of testosterone by hCG was observed in the cells of both retained and scrotal testes. The incremental rate of testosterone secretion was significantly lower at 0.1, 1 and 10 IU/ml hCG in the cells of retained testes than in scrotal testes, however. INSL3 secretion was significantly stimulated at 10 IU/ml hCG relative to unstimulated controls comprising cells of scrotal testes; no such stimulation was observed in the cells of retained testes. At 10 IU/ml hCG, the incremental rate of INSL3 was significantly lower in the cells of retained testes than scrotal testes. These results suggest that LH-induced secretory testosterone and INSL3 responses are lower in the interstitial cells of retained testes than of scrotal testes. Furthermore, the high concentrations of LH may acutely stimulate INSL3 release in scrotal testes of dogs, but not in retained testes.  相似文献   

11.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

12.
Plasma LH and testosterone (T) concentrations were measured before (basal) and two hours after (peak) GnRH stimulation in 52 Bos indicus strain bulls between one and two years of age. The animals comprised 13 1 2 Brahman, 20 3 4 Brahman, 8 1 2 Sahiwal and 11 3 4 Sahiwal cross bulls and samples were collected at approximately seven week intervals. Basal- and peak-T concentrations increased between one and two years of age, and basal LH concentrations decreased; no changes in peak LH were noted over time. Peak-T concentrations were significantly correlated with scrotal circumference (SC), sperm per ejaculate and seminal fructose. Significant genotype differences were noted, Sahiwal cross bulls had higher peak-T concentrations at puberty than Brahman cross bulls.  相似文献   

13.
Poor estrus expression and the difficulty encountered in predicting the time of ovulation compromise the reproductive efficiency of Murrah buffalo cows. Synchronization of ovulation and timed artificial insemination are able to precisely control the time of ovulation and thus avoid the need for estrus detection. Recently, the Estradoublesynch protocol (administration of a PGF2α injection 2 days before Heatsynch protocol; GnRH 0, PGF2α 7, estradiol benzoate [EB] 8) was developed that precisely synchronized ovulation twice, i.e., after GnRH and EB injections and resulted in satisfactory pregnancy rates in Murrah buffaloes. The present study was conducted on 104 cycling and 31 anestrus buffaloes to compare (1) the endocrine changes, timing of ovulations, ovarian follicular growth, and efficacy of Estradoublesynch and Heatsynch protocols in cycling and (2) the efficacy of Estradoublesynch and Heatsynch protocols for the improvement of fertility in cycling and anestrus Murrah buffalo cows. Ovulation was confirmed after all GnRH and EB treatments by ultrasonographic examination at 2-hour intervals. Plasma progesterone and total estrogen concentrations were determined in blood samples collected at daily intervals, beginning 2 days before the onset of protocols until the day of second ovulation detection. Ovulatory follicle size was measured by ultrasonography at six time points (first PGF2α administration of Estradoublesynch protocol every 2 days before the onset of Heatsynch protocol, GnRH administration of both protocols, 2 hours before ovulation detection after GnRH administration of both protocols, second PGF2α injection of Estradoublesynch protocol, PGF2α injection of Heatsynch protocol, EB injection of both protocols and, 2 hours before ovulation detection after EB administration of both protocols). Plasma LH, total estrogen, and progesterone concentrations were determined in blood samples collected at 30-minute intervals for 8 hours, beginning GnRH and EB injections, and thereafter at 2-hour intervals until 2 hours after the detection of ovulation. The first ovulatory rate was significantly higher (P < 0.05) in the Estradoublesynch protocol (84.6%) than that in the Heatsynch protocol (36.4%). The first LH peak concentration (74.6 ± 10.4 ng/mL) in the Estradoublesynch protocol was significantly higher (P < 0.05) than that of the Heatsynch protocol (55.3 ± 7.4 ng/mL). In Estradoublesynch protocol, the total estrogen concentration gradually increased from the day of GnRH administration coinciding with LH peak, and then gradually declined to the basal level until the time of ovulation detection. However, in Heatsynch protocol, the gradual increase in total estrogen concentration after GnRH administration was observed only in those buffalo cows, which responded to treatment with ovulation. In both Estradoublesynch and Heatsynch protocols, ovulatory follicle size increased by treatment with GnRH and EB until the detection of ovulation. The pregnancy rate after the Estradoublesynch protocol (60.0%) was significantly higher (P < 0.05) than that achieved after the Heatsynch protocol (32.5%). Satisfactory success rate using the Estradoublesynch protocol was attributed to the higher release of LH after treatment with GnRH, leading to ovulation in most of the animals and hence creating the optimum follicular size at EB injection for ovulation and pregnancy to occur.  相似文献   

14.
The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 × 0.47 or 5 × 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe.  相似文献   

15.
The objective was to determine the effects of estradiol-17β, monobutyl phthalate (MBP) and mono-(2-ethylhexyl) phthalate (MEHP) on testosterone and insulin-like peptide 3 (INSL3) secretions in cultured testicular interstitial cells isolated (enzymatic dispersion) from scrotal and retained testes of small-breed dogs. Suspension cultures were treated with estradiol-17β (0, 10, and 100 ng/mL), MBP (0, 0.8, and 8 mmol/L) or MEHP (0, 0.2, and 0.8 mmol/L) for 18 h, in the presence or absence of 0.1 IU/mL hCG. Testosterone (both basal and hCG-induced) and INSL3 (basal) concentrations were measured in spent medium. Effects of estradiol-17β, MBP, and MEHP on testosterone and INSL3 secretions were not affected (P > 0.15) by cell source (scrotal versus retained testis); therefore, data were combined and analyzed, and outcomes reported as percentage relative to the control. In testicular interstitial cells, basal testosterone secretion was increased (P < 0.01) by 100 ng/mL estradiol-17β (130.2 ± 10.6% of control). Among phthalates, 0.2 and 0.8 mmol/L MEHP stimulated (P < 0.01) basal testosterone secretion (135.5 ± 8.3% and 154.6 ± 12.9%, respectively). However, hCG-induced testosterone secretion was inhibited (P < 0.01) by 8 mmol/L MBP (67.7 ± 6.0%), and tended to be inhibited (P = 0.056) by 0.8 mmol/L MEHP (84.5 ± 5.6%). Basal INSL3 secretion was inhibited (P < 0.01) by 8 mmol/L MBP (73.6 ± 6.8%) and 0.8 mmol/L MEHP (76.9 ± 11.3%). In conclusion, we inferred that estradiol-17β and certain phthalate monoesters had direct effects on secretions of testosterone and INSL3 in canine testicular interstitial cells, with no significant difference between scrotal and retained testes.  相似文献   

16.
Hemicastration of Holstein bulls at 3 months of age resulted in increased (P<0.005) testicular weitht and testis sperm cell content at 330 days after treatment, but did not alter sperm cell concentration in the remaining hypertrophied testis. Radioimmuroassay of blood hormones at 1, 6, 12, and 24 weeks after treatment revealed that unilateral castration did not alter (P>0.1) basal levels or GnRH response profiles of either LH or testosterone compared to intact bulls. Hemicastration caused FSH to be elevated (P<0.01) compared to intact bulls at all sampling periods in both unstimulated and GnRH stimulated bulls. Prolactin varied with season and was greater (P<0.001) in hemicastrated bulls than in intact bulls at 1 and 6 weeks after treatment. Results indicate that unilateral castration at 3 months of age caused testicular hypertrophy of both steroidogenic and gametogenic function and this phenomena may be triggered by increased FSH or prolactin secretion, or both. Further, results indicate different testicular regulation mechanisms exist for pituitary LH and FSH release in bulls.  相似文献   

17.
Pituitary secretion of LH and testicular secretion of testosterone were investigated during the transitional period from the non-breeding to breeding season of mature male fallow deer exhibiting either normal transitional patterns or shortened transitional patterns in response to summer melatonin treatment. Melatonin implants were administered to 4 bucks for a 150-day period starting 130 days after the winter solstice. Four contemporary bucks served as controls. Melatonin treatment advanced rutting activity, testis development and neck muscle hypertrophy by 6-8 weeks. Profiles of plasma LH and testosterone, based on a 30-min sampling frequency over 24 h, were obtained from 3 treated and 3 control bucks on 4 occasions over the period spanning the transition into the breeding season. In control bucks, LH and testosterone pulse frequency were low (0-2 pulses/24 h) in January and increased (5-7 pulses/24 h) in February. By March and April (pre-rut and rut periods respectively) there was a two-fold increase in basal plasma LH concentrations, a decline in LH pulse frequency (0-1 pulse/24 h) and episodic surges in plasma testosterone concentrations. Melatonin treatment resulted in a shift in hormone profiles, with highly pulsatile patterns of LH and testosterone secretion (7 pulses/24 h) occurring earlier in January. The subsequent post-rut profiles of treated bucks were characterized by lower basal plasma LH concentrations, and reduced frequency and amplitude of plasma testosterone surges.  相似文献   

18.
Forty-week-old male broiler breeders were used in two experiments. Males were reared as recommended by the breeder, housed in individual cages, and cannulated to facilitate blood sampling. In experiment 1, blood samples were collected at 10- min intervals for 4 h commencing the day of cannulation (Day 0) and for 12 h on each of Days 1 and 2. In experiment 2, blood samples were collected at 10-min intervals for 8 h on Day 1. After centrifugation, plasma was stored at -20 degrees C until LH, FSH (experiment 1 and 2), testosterone, and corticosterone (experiment 1) concentrations were determined by RIA. Different statistical methods used to identify hormone secretion profiles revealed a characteristic pulsatile pattern of LH and FSH in plasma. However, LH pulses were more frequent and had greater amplitude than FSH pulses. Less than 32% of the FSH pulses were associated with LH episodes. Conversely, the association between LH and testosterone pulses averaged 83% in birds with testis weight greater than 10 g. Concentrations of corticosterone tended to increase after cannulation and remained elevated for only 3-4 h. Our data indicate that LH, FSH, and testosterone secretion is pulsatile in male broiler breeders. Additionally, LH pulses are associated with testosterone episodes but not with FSH pulses. The pulsatile pattern of FSH secretion, which is unique from those of LH, in adult males suggests that FSH secretion is independently regulated in the adult male fowl.  相似文献   

19.
Effects of GnRH, administered via the testicular artery, on testicular steroidogenesis were studied in rams during the non-breeding season. Concentrations of testosterone and 17-hydroxyprogesterone in testicular venous blood showed similar profiles which were identical for GnRH-treated (0.5 ng infused over 60 min or 25 ng injected) and control testes. Increases of testicular venous concentration of both hormones were only marginally reflected in peripheral venous concentrations. Peripheral administration of hCG (200 i.u., i.v.) stimulated testosterone secretion to a larger extent than 17-hydroxyprogesterone secretion in 10/11 rams, GnRH-treated and control testes showing identical responses. High testicular venous concentrations of both hormones after administration of GnRH were paralleled by increased concentrations of endogenous LH. These LH peaks were evoked by 25 ng GnRH in 7/8 rams. The observed effects of GnRH treatment on testicular steroid secretion thus cannot be considered to be the result of direct stimulation of steroidogenesis by GnRH.  相似文献   

20.
Current evidence suggests that endogenous opioid peptides (EOPs) tonically inhibit secretion of luteinizing hormone (LH) by modulating the release of gonadotropin-releasing hormone (GnRH). Because of their apparent inhibitory actions, EOPs have been assumed to alter both pulse frequency and amplitude of LH in the rat; and it has been hypothesized that EOP pathways mediate the negative feedback actions of steroids on secretion of GnRH. In order to better delineate the role of EOPs in regulating secretion of LH in the male rat, we assessed the effects of a sustained blockade of opiate receptors by naloxone on pulsatile LH release in four groups: intact male rats, acutely castrated male rats implanted for 20 h with a 30-mm capsule made from Silastic and filled with testosterone, acutely castrated male rats implanted for 20 h with an osmotic minipump dispensing 10 mg morphine/24 h, and male rats castrated approximately 20 h before treatment with naloxone. We hypothesized that if EOPs tonically inhibited pulsatile LH secretion, a sustained blockade of opiate receptors should result in a sustained increase in LH release. We found that treatment with naloxone resulted in an immediate but transient increase in LH levels in intact males compared to controls treated with saline. Even though mean levels of LH increased from 0.15 +/- 0.04 to a high of 0.57 +/- 0.14 ng/ml, no significant difference was observed between the groups in either frequency or amplitude of LH pulses across the 4-h treatment period. The transient increase in LH did result in a 3- to 4-fold elevation in levels of plasma testosterone over baseline. This increase in testosterone appeared to correspond with the waning of the LH response to naloxone. The LH response to naloxone was eliminated in acutely castrated rats implanted with testosterone. Likewise, acutely castrated rats treated with morphine also failed to respond to naloxone with an increase in LH. These observations suggest that chronic morphine and chronic testosterone may act through the same mechanism to modulate secretion of LH, or once shut down, the GnRH pulse-generating system becomes refractory to stimulation by naloxone. In acutely castrated male rats, levels of LH were significantly increased above baseline throughout the period of naloxone treatment; this finding supports the hypothesis that the acute elevation in testosterone acting through mechanism independent of opioid is responsible for the transient response of LH to naloxone in the intact rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号